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ABSTRACT

Global sea surface temperature (SST) evolution is analyzed by constructing predictive models that best
describe the dataset’s statistics. These inverse models assume that the system’s variability is driven by
spatially coherent, additive noise that is white in time and are constructed in the phase space of the dataset’s
leading empirical orthogonal functions. Multiple linear regression has been widely used to obtain inverse
stochastic models; it is generalized here in two ways. First, the dynamics is allowed to be nonlinear by using
polynomial regression. Second, a multilevel extension of classic regression allows the additive noise to be
correlated in time; to do so, the residual stochastic forcing at a given level is modeled as a function of
variables at this level and the preceding ones. The number of variables, as well as the order of nonlinearity,
is determined by optimizing model performance.

The two-level linear and quadratic models have a better El Nifio-Southern Oscillation (ENSO) hindcast
skill than their one-level counterparts. Estimates of skewness and kurtosis of the models’ simulated Nifio-3
index reveal that the quadratic model reproduces better the observed asymmetry between the positive El
Nifo and negative La Nifia events. The benefits of the quadratic model are less clear in terms of its overall,
cross-validated hindcast skill; this model outperforms, however, the linear one in predicting the magnitude
of extreme SST anomalies.

Seasonal ENSO dependence is captured by incorporating additive, as well as multiplicative forcing with
a 12-month period into the first level of each model. The quasi-quadrennial ENSO oscillatory mode is
robustly simulated by all models. The “spring barrier” of ENSO forecast skill is explained by Floquet and
singular vector analysis, which show that the leading ENSO mode becomes strongly damped in summer,
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while nonnormal optimum growth has a strong peak in December.

1. Introduction

a. Motivation

The El Nifio-Southern Oscillation (ENSO) phenom-
enon dominates interannual climate signals and has
great economic and societal impacts. It originates in the
coupled ocean—atmosphere dynamics of the tropical
Pacific (Philander 1990), but has a large influence on
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atmospheric circulation and air-sea interaction outside
the tropical belt through associated teleconnections
(Alexander et al. 2002; Lau and Nath 2001).

An important aspect of ENSO is that its positive-
phase El Nifio events are generally characterized by a
larger magnitude than its negative La Nifia counter-
parts (Burgers and Stephenson 1999; Hoerling et al.
1997; Sardeshmukh et al. 2000). This statistical skew-
ness is but one of the indicators suggesting that, at least
to some extent, the dynamics of ENSO involves non-
linear processes (Ghil and Robertson 2000; Neelin et al.
1994, 1998). At the same time, most detailed numerical
models used for operational ENSO prediction signifi-
cantly underestimate this nonlinearity (Hannachi et al.
2003), and the quality of their forecasts is still far from
satisfactory (Barnston et al. 1994, 1999; Landsea and
Knaff 2000).

Ghil and Jiang (1998) and Mason and Mimmack
(2001) reviewed a variety of statistical models that pos-
sess useful ENSO forecast skill; most of these models



4426

are still linear. Nonlinear models are getting more at-
tention lately: Timmermann et al. (2001) have applied
multiple nonparametric regression analysis to derive a
set of low-order ENSO empirical dynamical models,
while neural-network models (Grieger and Latif 1994;
Tangang et al. 1998) have been used to reconstruct the
attractor of ENSO dynamics and make extended
ENSO forecasts. The complex structure of multilayer
neural-network models, however, makes their results
difficult to interpret (Hsieh and Tang 1998), and they
did not provide significant improvements in skill over
linear methods (Tang et al. 2000).

In this paper, we construct a hierarchy of statistical
models for ENSO forecasts. This hierarchy includes a
nonlinear model that is easy to interpret, accurately
represents both linear and nonlinear aspects of the as-
sociated dynamics, and is validated out to 12 months.

b. Linear inverse models

As a starting point in developing our ENSO model
hierarchy, we use the concept of inverse stochastic
models. If X is the climate-state vector, X its time mean,
and x = X — X the vector of anomalies, then the evo-
lution of x can be expressed as

% = Lx + N(x). 1)

Here the dot denotes a time derivative, L is a linear
operator, and N represents nonlinear terms; both L and
N may be function of X, but this dependence is not
taken into consideration here.

The simplest type of inverse stochastic model is the
so-called linear inverse model (LIM; Penland 1989,
1996). LIMs are obtained by assuming, in Eq. (1), that
N(x) dt =~ Tx dt + dr'®, where T is the matrix describing
linear feedbacks of unresolved processes on x, and dr®
is a white-noise process that can be spatially correlated.
With this assumption Eq. (1) becomes

dx =B%dt + d&r'”, B?=L+T. 2
The matrix B and the covariance matrix of the noise
Q = @®OrOTy can be directly estimated from the ob-
served statistics of x by multiple linear regression
(MLR; Wetherill 1986). LIMs have shown some success
in predicting ENSO (Penland and Sardeshmukh 1995;
Johnson et al. 2000a,b), tropical Atlantic variability
(Penland and Matrosova 1998), as well as extratropical
atmospheric variability (Winkler et al. 2001). These
models are typically constructed in the phase space of
the system’s leading empirical orthogonal functions
(EOFs; Preisendorfer 1998). The state vector x, or pre-
dictor-variable vector, consists of amplitudes of the cor-
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responding principal components (PCs), while the vec-
tor of response variables contains their tendencies x.

c. This paper

In the study of most geophysical phenomena, includ-
ing ENSO, the assumptions of linear, stable dynamics,
and of additive white noise used to construct LIMs are
only valid to a certain degree of approximation. In par-
ticular, the stochastic forcing r® in Eq. (2) typically
involves serial correlations. In addition, when the non-
linearity is strong, the matrices B and Q obtained
from the data can exhibit substantial dependence on
the lag used to fit them (Penland and Ghil 1993).

In the present paper, we consider generalizations of
LIMs that use additional statistical information to ac-
count for both nonlinearity and serial correlations in
the additive noise. Kravtsov et al. (2005, hereafter
KKG) first demonstrated the performance of the pro-
posed approach by using three simple, but geophysi-
cally relevant examples, namely the deterministic
Lorenz (1963) model and two stochastically forced po-
tential-well systems. Next, the methodology was ap-
plied to a very long simulation of the Marshall and
Molteni (1993) three-layer quasigeostrophic atmo-
spheric model, which has been performed and analyzed
by Kondrashov et al. (2004), and finally to a 44-yr set of
Northern Hemisphere geopotential heights. In the
present paper, the methodology of KKG is applied to a
global SST dataset, and the resulting inverse models are
used for the analysis and prediction of seasonal-to-
interannual climate variability.

One major modification of LIMs is obtained by as-
suming a polynomial, rather than linear form of N(x) in
Eq. (1), in particular, a quadratic dependence. The ith
component Ny(x) of N can then be written as

Ni(x) dt ~ (x"Ax + tx + V) dt + dr'l”. (3)

The matrices A, represent the blocks of a third-order
tensor, while the vectors b{” = I, + t; are the rows of the
matrix B® = L + T [compare with Eq. (2)]. These
objects, as well as the components of the vector ¢, are
estimated here by multiple polynomial regression
(MPR; McCullagh and Nelder 1989).

In section 2, we briefly describe a multilevel, qua-
dratic inverse model that deals with the problem of
serial correlations in r”). The global sea-surface tem-
perature (SST) dataset, as well as our analysis proce-
dure, are described in section 3. In section 4, the linear
and nonlinear models are compared in terms of their
statistical and spectral properties relative to those ob-
served, and we evaluate their forecast potential, with an
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emphasis on central Pacific SST anomalies. We apply in
section 5 month-by-month eigenspectrum analysis, as
well as Floquet and singular-vector analysis to explain
several features of the modeled and observed data pre-
sented in section 4; these features include the quasi-
biennial and low-frequency peaks in the power spectra,
changes in seasonal variance, and the “spring barrier”
in prediction skill. The results are summarized in sec-
tion 6.

2. Nonlinear multilevel model

We construct inverse stochastic models in the phase
space of the leading EOFs of the SST field. The qua-
dratic model that we will use below has the general
form

dx; = (XTA,X + bﬁ»mx + cﬁo)) dt + drﬁo); i=1,...,1,
)

where x = {x;} is the state vector of dimension /. The
matrices A,, the vectors b{”), and the components c{* of
the vector ¢, as well as the components #” of the
residual forcing r”’, are determined by least squares. If
the inverse model contains a large number of variables,
the statistical distribution of r”’ at a given instant is
nearly Gaussian, according to the central limit theorem
(Von Mises 1964).

However, the stochastic forcing r'® in Eq. (4) typi-
cally involves serial correlations and might also depend
on the modeled process x. We include, therefore, in Eq.
(5) below, an additional model level to express the
known time increments dr(®’ as a linear function of an
extended state vector [x, 7] = (x", rPT)T. We esti-
mate this level’s residual forcing in turn by least
squares. More levels are added in the same way, until
the Lth level’s residual r“*" becomes white in time,
and its lag-0 correlation matrix converges to a constant
matrix:

dx; = (XTAI-X + bﬁ-o)x + CE;O)) dt + rE-O) dt,
dr® =b"[x, ¥ dt + " dt,

drﬁ” = bﬁ-z)[x, r?, r(l)] dt + rﬁ-z) dt,

dar® = b x, v Y, L kP dr + dri Y,
i=1,...,L (5)

Equation (5) describes a wide class of processes in a
fashion that explicitly accounts for the modeled process
x feeding back on the noise statistics: the vectors b{” are
the rows of matrices BY) that represent this “eddy feed-
back.” The multilevel linear inverse model is obtained
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by assuming, in Eq. (5), A, = 0 and ¢® = 0. The clas-
sical LIM is thus the one-level version of our multilevel
linear model. The details of the methodology and fur-
ther discussion appear in KKG.

It is well known that extreme ENSO events, both
positive (El Nifio) and negative (La Nifio), tend to oc-
cur in boreal winter. Several ways to simulate ENSO
phase locking to an annual cycle have been proposed in
empirical models. Penland and associates (Penland and
Sardeshmukh 1995; Penland 1996; Penland and Ma-
trosova 2001) argued that the dynamical operator in an
LIM model for ENSO should be independent of sea-
son, and that the phase locking is caused by the sea-
sonal dependence of the stochastic forcing. Johnson et
al. (2000a,b), however, suggest the opposite, namely
that the seasonality in the dynamical propagator of a
Markov model for ENSO cannot be neglected.

Thompson and Battisti (2000, 2001) demonstrated
that seasonal variations in the mean state of the linear,
dynamical, stochastically forced model help reproduce
qualitatively the observed seasonal patterns of variance
and lagged autocovariance in tropical Pacific SSTs.
Both Johnson et al. (2000b) and Xue et al. (2000) ob-
tained seasonally varying Markov transition matrices
for each calendar month. Seasonal-type models, how-
ever, have to be trained on much shorter records (i.e.,
12 times shorter than the original time series for annu-
ally averaged models); this shortcoming leads to larger
errors in estimating the regression parameters and, con-
sequently, to a lower prediction skill.

We suggest here an alternative approach to include
seasonal dependence in the dynamical part of the first
level of our linear and nonlinear models, namely we
assume the matrix B® and vector ¢® to be periodic
with period 7 = 12 months:

B” = B, + B, sin2mt/T) + B, cos2nt/T),

¢ = ¢, + ¢, sinmt/T) + ¢, cos2mt/T).

The complete time record is thus used to simulta-
neously estimate the four seasonal-dependence coeffi-
cients B, B, ¢, and ¢, which provides greater stability
in our regression parameter estimates. Specifying such
seasonal dependence only on the first model level gave
the best results in cross-validation forecasts, when com-
pared to alternative models (not shown), where the pe-
riodic form of Eq. (6) was used on both levels, or on the
second level only.

The optimal number of state-vector components, as
well as the degree of nonlinearity, has to be assessed, in
general, using cross validation. This test is carried out
by Monte Carlo simulations in which the inverse model,
trained on one part of the available data, is used to
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estimate the properties of the system evolution during
the validation interval that was not included in the
training interval. The measure chosen to assess the
model depends on the purpose at hand: if the model is
to be used for prediction, the cross-validated hindcast
skill, quantified by the correlation between the ob-
served and simulated fields, or the root-mean-square
(rms) distance between the two, at future times, is an
appropriate measure of model performance; in more
theoretical applications, certain statistical characteris-
tics of the observed and modeled evolution, such as
probability density functions (PDFs) of model variables
and their power spectra, have to be compared. We will
use both hindcast skill measures and overall statistical
behavior to compare the performance of several in-
verse stochastic models.

3. Data and analysis procedure

We construct our inverse stochastic models using a
645-month dataset (January 1950-September 2003) of
global, monthly SST anomalies, given on a 5° X 5° grid
over the 30°S-60°N latitude belt (Kaplan et al. 1998),
with the seasonal cycle removed. The spatial extent of
the dataset was chosen to maximize prediction skill of
the so-called Nifio-3 SST index. This index is defined as
the area-averaged SST anomaly over the rectangular
box (5°S-5°N, 150°-90°W), outlined by the dashed line
in Figs. 2a and 2b below.

Trenberth and Hurrel (1994) have argued that the
Nifo-3 time series experiences an abrupt positive shift
after about 1976, when considering a mean of the rec-
ord before and after this date. Chao et al. (2000), how-
ever, showed that this shift is not unique, but represents
one of several phase shifts associated with a 15-20-yr
interdecadal oscillation. We find that our model’s per-
formance slightly improves at lead times of more than 8
months, as described in section 4 below, if the 1976/77
shift is removed pointwise from the data. The time in-
terval is divided into two subintervals, 1950-76 and
1977-2003, and the two distinct means of the time series
are subtracted from the respective subintervals; the re-
sulting corrected Nifio-3 SST index is shown as a solid
line in Fig. 1.

The resulting dataset is used in two different ways.
When considering long-term statistical properties or
computing in-sample hindcasts, we construct our in-
verse models in the subspace spanned by the leading
EOFs computed on the whole time series. On the other
hand, when we consider cross-validated hindcasts, we
use EOFs of the reduced dataset that leaves out seg-
ments of SST evolution, which are several years long
and which we subsequently predict (Penland and
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FI1G. 1. Time series of the Nifno-3 (5°S-5°N, 150°-90°W) SST
index. Dashed line: raw data (Kaplan et al. 1998); solid line: the
1950-76 and 1976-2003 portions of the time series have been
separately centered to have mean zero each.

Sardeshmukh 1995; Johnson et al. 2000a,b). We choose
these segments to span complete warm, as well as cold
ENSO phases, and thus divide the time series into 3-5-
yr-long intervals that start and end in January of the
following years: 1950, 1955, 1960, 1964, 1968, 1972,
1975, 1979, 1982, 1986, 1990, 1994, 1997, and 2002. If
5-yr-long segments of equal length are used, some of the
training periods include an incomplete large-amplitude
ENSO cycle; this inclusion generally results in a reduc-
tion of the cross-validated hindcast skill of up to 0.05 in
anomaly correlation at a 6-month lead time. This re-
duction is due to the small number of large ENSO
events in the relatively short observed record, which
hampers reliable estimates of the model coefficients.

Both in-sample hindcasts and cross-validated hind-
casts are evaluated by performing a set of integrations
of a given inverse model, initialized at each month in
the record, for a given number of months. The predic-
tion characteristics are computed by transforming the
model’s solution from EOF space back into physical
space, and comparing it against the total observed SST
anomaly.

The number of variables (i.e., of EOFs retained) and
the order of the regression polynomial used in the in-
verse models is chosen to maximize the models’ cross-
validated hindcast skill: 20 variables is the best choice
for all linear and quadratic models; the skill deterio-
rates if a smaller or larger number is used. A cubic
model was also tested, but did not perform as well as
the quadratic model in cross-validated hindcasts, and
will not be considered here any further. Although the
residual forcing at the first level of both linear and qua-
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dratic models does involve serial correlations, we con-
struct one-level (1-L) and two-level (2-L) versions of
these models for explicit comparison of model perfor-
mance. The residual forcing at the second level is fairly
white, and adding further levels does not improve the
hindcast skill. The stochastic forcing in the models is
spatially correlated according to the residual forcing’s
lag-0 covariance matrix.

The model coefficients, as well as the residual forc-
ing, are estimated for the linear models by ordinary
least squares (Press et al. 1994). When higher-order
polynomials are used for the inverse models, we have
many more parameters to estimate, and the regression
problem (see appendix A of KKG) can become ill-
conditioned for a short data record. This ill-condition-
ing is related to the collinearity phenomenon, in which
the vectors of predictor variables are close to linear
dependence (Wetherill 1986). To deal with this prob-
lem for our quadratic model, we use the partial least
squares (PLS) procedure (Wold et al. 1984; Hoskulds-
son 1996). PLS finds the so-called factors, or latent vari-
ables, that capture the maximum variance in the pre-
dictor variables, as well as achieving high correlation
with the response variables. The number of these vari-
ables to retain is found by using cross validation.

The resulting models (5) are integrated with Ar = 1
month, being forced at each time step by random real-
izations of the spatially correlated stochastic forcing at
the model’s last level. To produce cross-validated or
in-sample hindcasts we use “ensemble forecasting.” In-
stead of using just one model run, many runs with dif-
ferent random realizations of the stochastic forcing are
made. The ensemble mean of the different forecasts
(Kalnay 2003) provides a smoother and more reliable
seasonal-to-interannual forecast.

4. Model comparison and validation

In this section we show first that 2-L models are su-
perior to 1-L ones in terms of cross-validated hindcast
skill at long lead time (section 4a). In section 4b our
best 2-L linear and quadratic models are then com-
pared in terms of their statistical properties, such as the
PDF and seasonal variation [sections 4b(1) and 4b(2)]
and power spectra [section 4b(3)] of the observed and
modeled SSTs. Finally, the models are compared in sec-
tion 4c(1) in terms of their predictive skill, and the
“spring barrier” in this skill is discussed in section 4c¢(2).

a. Comparison between one-level and two-level
models

We compare the 1-L and 2-L quadratic models in
terms of their respective cross-validated hindcast skills
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in Fig. 2 (see also Fig. 9 in KKG). Figures 2a and 2b
display the spatial distribution of the SST anomaly cor-
relations in the cross-validated hindcasts at 9-month
lead, for the 1-L and 2-L model versions, respectively.
The hindcast time series represent each the mean of a
100-member ensemble, and they have been cross-
validated as described in section 3. Similar results have
been obtained when comparing 1-L and 2-L linear
models (not shown).

Both quadratic model versions have similar skill pat-
terns, with maximum values over the equatorial Pacific
and Indian Ocean; a stronger maximum in the Nifio-3
region (outlined by a solid black line in Figs. 2a,b) ap-
pears for shorter lead times (not shown). The 2-L mod-
el’s skill is higher practically everywhere; this superior
skill of the 2-L model is most marked south of the
Niflo-3 region, as well as in the Indian Ocean.

The correlation between the predicted and observed
area-averaged Nifio-3 SST anomalies is plotted in Fig.
2c: the 2-L model (solid line) is significantly more skill-
ful than the 1-L model (dotted line) at lead times longer
than 4 months; both 1-L and 2-L models beat the
damped persistence hindcast (dashed line). The latter
has been generated by fitting an AR(1) model to the
observed Nifio-3 SST time series, and then using this
model to damp persistence exponentially in lead time.
The 2-L model outperforms the 1-L model in rms error
as well, with improvement becoming significant at lead
times longer than 6 months (Fig. 2d).

b. Statistical properties

Given the better performance of the 2-L models, we
only consider henceforth their linear and quadratic ver-
sions; in this subsection, we examine the long-term sta-
tistical properties of these two model versions. Both
models were trained on the EOFs of the entire ob-
served SST time series, after which we performed 100
realizations for either model, each being 645 months
long, like the observed dataset.

1) HISTOGRAMS AND SEASONAL DEPENDENCE

The histograms of the observed and simulated
Nifio-3 SST index are plotted in the left column of Fig.
3; they have been normalized to have unit area. In each
panel, the corresponding normal distribution is plotted
as a heavy solid line. In the right column of Fig. 3 we
plot the monthly distribution of variance for the corre-
sponding SST indices.

Results for the observed data (1950-2003) are shown
in row (a), and results for the 100-member ensemble of
realizations of the quadratic and linear model in rows
(b) and (c), respectively. The histograms and variances
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FiG. 2. Comparison of model performance for the one-level (1-L) and two-level (2-L)
quadratic models. Anomaly correlation map for 9-month-lead cross-validated hindcasts using
(a) the 1-L model and (b) the 2-L model. Nifio-3 SST hindcast skill, as measured by (c)
anomaly correlation and (d) error variance for the 1-L. model (dash-dotted) and the 2-L model
(solid), with the damped-persistence forecast (dotted line with circles) being used as a refer-
ence skill. The Nifio-3 SST anomaly is defined as the area average over the rectangular box

shown in (a) and (b).

for the simulated data represent averaging over the
100-member ensemble.

The variance of the observed Nifio-3 index tends to
peak during the winter and drop in spring, which is
related to the so-called spring barrier in ENSO pre-

diction (e.g., Balmaseda et al. 1995; Weiss and Weiss
1999). This seasonal feature of ENSO is simulated rea-
sonably well by both the linear and the quadratic 2-L
model (right column of Figs. 3b,c); being averaged over
many integrations, the seasonal variation is not as large
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Fi1G. 3. Niflo-3 index statistics for observed and simulated data;
the latter refer to a 100-member ensemble of 645-month-long
model integrations. (a) Observations (1950-2003): (left) the his-
togram with superimposed fitted normal PDF (heavy solid);
(right) distribution of variance by month, starting with Jan. (b)
Same as in (a) but for the 2-L quadratic model; (c) same as in (b),
but for the 2-L linear model. (d) Distribution of (left) skewness
and (right) kurtosis for the 2-L quadratic model with superim-
posed fitted normal density; the observed Nifio-3 values are
marked by a solid vertical line, while the mean and 95% confi-
dence levels are shown by dash-dotted and dashed lines, respec-
tively. (e) Same is in (d), but for the 2-L linear model.

in the models as in the observed data, and the timing of
the maximum seasonal variance is slightly off. The sea-
sonal evolution in variance is analyzed in detail in the
next subsection.

The observed dataset is characterized by strongly
non-Gaussian features, with El Nifio events generally
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having larger magnitude than La Ninas. The corre-
sponding histogram in Fig. 3a exhibits therefore posi-
tive skewness. When the histogram is computed by
combining all individual realizations of the quadratic
model (Fig. 3b), the distribution of the Nifio-3 index is
also positively skewed, albeit to a lesser extent than for
the observed data. In contrast, since the stochastic forc-
ing is normally distributed, the histograms produced by
the linear model are bound to approximate Gaussian
PDF, as shown in Fig. 3c (see also Figs. 10a—c in KKG).
The histograms in Figs. 3b and 3c do not change sub-
stantially when using a larger ensemble size.

To quantify the deviations from Gaussianity, we ex-
amine the skewness b; and kurtosis b, — 3 (Mardia
1980), where b, = my/m3?, b, — 3 = my/m3 — 3, and m,
is the kth sample moment about the mean. The skew-
ness describes asymmetry of the probability distribu-
tion about the mean, while the kurtosis measures its
flatness. For a Gaussian distribution both b, and b, — 3
equal zero.

We show the distribution of skewness and kurtosis
for the single observed and the 100 model simulations,
with a linear trend subtracted, in Figs. 3d and 3e. The
skewness and kurtosis values for the observed Nifio-3
index (vertical solid lines) are equal to 0.79 and 1.26;
they fall within the 95% percentile of the quadratic
model distribution (Fig. 3d). In contrast, the observed
values for both skewness and kurtosis are beyond the
95% confidence limit of the linear model distribution
(Fig. 3e). The skewness mean value of 0.01 for the
linear model is very close to zero, in agreement with
Fig. 3c.

The mean values for skewness and kurtosis in Fig. 3d,
0.39 and 0.51, respectively, are about one-half the ob-
served ones. When using a smaller number of variables
(as few as five), the quadratic model matches better the
observed moment values, but it has a lower cross-
validated hindcast skill.

2) BOX-PLOT STATISTICS

To examine in further detail the seasonal PDF evo-
lution of the observed and simulated data, we use so-
called box plots (e.g., Hannachi et al. 2003). These plots
show the spread around the mean and the skewness of
a given distribution, as well as displaying the outliers;
they are displayed in Fig. 4 for the observed data (Fig.
4a), as well as long data (same as used in Figs. 3b,c)
from integrations of the nonlinear and linear models
(Figs. 4b and 4c, respectively). The symbols for a given
calendar month are explained in the caption of the fig-
ure.

The observed dataset exhibits significant seasonal de-
pendence of its spread and skewness, with larger spread
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FI1G. 4. Box-plot statistics for each month of the (a) observed
Nifio-3 SST index (1950-2003), (b) 100-member ensemble of 645-
month-long runs of the 2-L quadratic model (same as for Fig. 3b),
and (c) 100-member ensemble of the 2-L linear model (same as
for Fig. 3c). The horizontal line within each box marks the me-
dian, while the height of the box represents the interquartile range
(IQR), which is defined as the distance between the first and the
third quartiles and is a robust measure of spread. The whiskers
extend to the most extreme data value within 1.5 X IQR, while
points beyond the ends of the whiskers represent outliers and are
indicated by individual tick marks.

and strongly positive skewness during boreal winter.
The linear model appears to do slightly better in cap-
turing the seasonal dependence of the spread (Figs.
4b,c), while the quadratic model captures better the
skewness of the data, primarily in the outliers. The sea-
sonal variation in prediction skill of our models is pre-
sented in section 4c.

3) POWER SPECTRA

ENSO climate signals involve two oscillatory modes:
the lower-frequency or quasi-quadriennial (QQ) mode
(Jiang et al. 1995) has a period of 3—7 yr, while the other
mode is quasi-biennial (QB; Rasmusson et al. 1990;
Ghil et al. 2002). Any model aiming at extended-range
ENSO prediction should reproduce these periodicities
(Ghil and Jiang 1998; Ghil and Robertson 2000). State-
of-the-art climate models, however, still have difficul-
ties in simulating the observed Nifio-3 spectra. For ex-
ample, the latest version of the Community Climate
System Model, CCSM2, simulates an ENSO signal with
a peak frequency that corresponds to a period of 2-3 yr
(Kiehl et al. 2003).

We investigate the existence of such oscillatory
modes in our inverse model simulations and compare
them with the observed behavior using advanced spec-
tral methods—singular-spectrum analysis (SSA; Vau-
tard and Ghil 1989; Keppenne and Ghil 1992; Dettinger
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et al. 1995; Ghil et al. 2002) and wavelet analysis
(Strang 1989; Meyer 1992). SSA and wavelet methods
are complementary: SSA is especially useful for the
analysis of amplitude- and phase-modulated signals,
while wavelet analysis allows one to follow changes in
the amplitude and frequency of an oscillatory signal
over time.

SSA computes eigenvalues and eigenvectors of a
given time series’ lag-covariance matrix. The eigenval-
ues are the squares of the singular values after which
the method is called, while the eigenvectors are often
called temporal EOFs, by analogy with the spatial
EOFs that arise in the PC analysis of meteorological
fields (Fraedrich 1986; Vautard and Ghil 1989). The
projection of the original time series onto the temporal
EOFs yields temporal PCs. The SSA window width de-
termines the range of periodicities to be detected. An
oscillatory component is represented in SSA by a pair
of approximately equal singular values, with the respec-
tive temporal EOFs and PCs being in phase quadrature
(Vautard and Ghil 1989). To determine the statistical
significance of oscillatory pairs, we apply a x> test
against a null hypothesis of red noise (Allen and Smith
1996), as well as a lag-correlation test to verify that a
given pair of PCs is indeed in quadrature (Ghil and Mo
1991; Vautard et al. 1992).

The continuous wavelet transform (CWT) is defined
as the convolution of the signal with scaled, shifted ver-
sions of the mother wavelet function. For our analysis,
we will use a complex Gaussian wavelet of the eighth
order as the basis function. The CWT yields a number
of time-dependent wavelet coefficients, which are re-
lated to amplitude and frequency. The absolute value
of these coefficients yields the wavelet spectrum.

We show the results of the spectral analysis in Fig. 5.
In Figs. 5a and 5b, SSA spectra of the observed Nifio-3
index (1950-2003), and of a single, 53-yr-long realiza-
tion of our quadratic, 2-L model are plotted. The cor-
responding results of the CWT analysis are shown in
panels Figs. 5c and 5d. We have used an SSA window
width of 60 month, which allows one to capture peri-
odicities as long as 5 yr. Similar results are obtained
using windows of 50 and 70 months (not shown). Error
bars correspond to the 2.5th and 97.5th percentiles of a
red-noise test. Singular values that lie outside this in-
terval are unlikely, at the 95% level, to be due to a
red-noise process. For each EOF, a characteristic fre-
quency has been estimated by maximizing its correla-
tion with a sinusoid.

For the observed data, SSA detects one significant
oscillatory pair with a period of 47 months (EOFs 1 and
2), and a possible second pair with a period of 27
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FIG. 5. Spectra of the Nifio-3 SST index for observed data and model simulations. (a), (c¢) Singular spectrum and wavelet spectrum
for observations (1950-2003); filled circles show SSA eigenvalues, plotted against the dominant frequency associated with the corre-
sponding PCs; the confidence intervals correspond to the 2.5% and 97.7% percentiles of 100 Monte Carlo simulations of a red-noise
process with the same length, variance, and lag-1 autocorrelation as the analyzed time series [see Allen and Smith (1996) for details].
(b), (d) Singular spectrum and wavelet spectrum for a 53-yr simulation of the 2-L quadratic model. The contour intervals are in arbitrary

units, but are the same for all panels.

months (EOFs 3 and 4). The lag-correlation test for the
corresponding pair of temporal PCs confirms that both
of these pairs are indeed oscillatory. The two pairs thus
capture the QB (Rasmusson et al. 1990), and QQ (Jiang
et al. 1995) mode. For the 2-L quadratic model’s real-
ization, we find that its four leading EOFs also form
two possible pairs, with periods of 56 and 28 months,
respectively; both are confirmed to be oscillatory by a
lag-correlation test. Two ENSO oscillatory modes are
also prominent in much longer model simulations (not
shown), though the QB mode is less robust than the
QQ one.

The main oscillatory mode in the simulated data has
a slightly longer period than observed. The frequency
of this oscillation changes with time, however, as it does
in the observations (Moron et al. 1998; Ghil et al. 2002;

Wang and Wang 1996). The wavelet spectrum of the
observed data in Fig. 5c demonstrates changes in the
period of ENSO’s low-frequency mode. The period is
close to 70 months in the 1950s, undergoes an abrupt
drop to about 40 months in the 1960s, and then slowly
increases to 50-60 months by the end of the record.
Qualitatively similar behavior for the dominant mode is
obtained by calculating instantaneous frequencies of
the leading pair of EOFs in multiscale SSA (Yiou et al.
2000; not shown). We plan to investigate the interdec-
adal variability of our models in a follow-up paper in
greater detail.

The wavelet spectrum of the simulated data in Fig. 5d
is qualitatively similar to the observed one, in as much
as the period of the main oscillation changes from 50 to
30 and then back to 50 months during the course of
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time. The particular realization we display is arbitrary,
so we are not attempting to capture the timing of the
frequency transitions shown in Fig. Sc, only their range
and overall character. We examine further the causes
and properties of ENSO oscillatory modes in section 5.

c. Hindcasts

In this subsection we discuss our models’ cross-
validated ENSO hindcasts. The procedure for generat-
ing these hindcasts was described in section 3.

1) ENSEMBLE-MEAN AND EXTREME-EVENT
HINDCASTS

It turns out that the linear and quadratic, 2-L inverse
models have comparable cross-validated hindcast skill
overall; this skill was only shown in Fig. 2 for the latter.
We will see, though, that the quadratic model outper-
forms its linear counterpart in predicting the magnitude
of extreme SST anomalies.

Figures 6a and 6b show the prediction skill f, ...(¢)
for the mean of a 100-member ensemble hindcast,
along with the damped-persistence hindcast. Both mod-
els are significantly more skillful than the persistence
hindcast, and have almost identical rms errors and
anomaly correlations for lead times up to 6 months; at
this range, the correlation coefficient for both still ex-
ceeds 0.6, which represents a common criterion of use-
ful prediction. At lead times beyond 6 months, the lin-
ear model does a slightly better job than the quadratic
one.

It is difficult to compare our results with those from
other statistical and dynamical models in detail, since
different researchers use different measures of skill and
different forecast-validation intervals. At the present
time, dynamical models do not seem to outperform the
best statistical models in forecasting major ENSO indi-
ces (Ghil and Jiang 1998; Barnston et al. 1999; Goddard
and DeWitt 2005) and hence we limit ourselves here to
the latter. In doing so, it is well known that the Nifio-3.4
index tends to be slightly easier to forecast than Nifio-3
and that smoothing of the forecast over several months
is a common practice that also improves anomaly-
correlation skills. The 0.62 value of our unsmoothed,
monthly anomaly correlation for the Nifio-3 index at a
6-month lead in Fig. 6a here is thus quite similar to the
cross-validated skill of other statistical models. For in-
stance, both Johnson et al. (2000b) and Xue et al.
(2000) used a 3-month smoothing of the Nifio-3.4 index
in their cross validations and obtained, respectively,
0.60 for the 1956-95 interval (Johnson et al. 2000b, their
Fig. 4) and 0.65 for the 1980-95 interval (Xue et al.
2000, their Fig. 12). The competitive skill of our results
has led to our best 2-L quadratic model being included
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F1G. 6. Anomaly correlation and normalized error variance of
the cross-validated Nifo-3 hindcasts for (a), (b) the mean of the
100-member ensemble and (c), (d) the extreme-event series (see
text for details). Lines are defined in the legend.

in a multimodel prediction scheme at the International
Research Institute for Climate Prediction (see online at
http://iri.columbia.edu/climate/ENSO/currentinfo/SST-
table.html for details).

Based on the same two 100-member ensembles, we
plot in Figs. 6¢ and 6d the forecast skill of an extreme-
event hindcast f,,(f) = o, f, + o_f_, where f, and f_
are ensemble averages over the top and bottom 20% of
the hindcasts, ordered by the magnitude of the pre-
dicted SST anomaly, and w. = 0.5[1 = tanh(fcan)]-
With this weighting, f...(¢) =~ f, during strong warm
events, and f.., () =~ f_ during strong cold events. The
rms error is expected to be higher in Fig. 6d than in Fig.
6b, since we average now only over forecasts in the tails
of the ensemble distribution. The extreme-event hind-
cast produced by the quadratic model has a somewhat
smaller rms error than its linear counterpart (Fig. 6d),
while the anomaly correlation with the observed data
for both models is essentially the same as for the en-
semble mean hindcast (cf. Figs. 6c and 6a). The ex-
treme-event nonlinear hindcasts beat persistence in rms
error after 2 months (Fig. 6d) and continues to do so for
the following 10 months. The modest improvement of
the quadratic versus linear hindcasts comes from the
nonlinear model’s ability to capture the non-Gaussian
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FiG. 7. (a), (b) Extreme-event hindcasts for the Nifio-3 index;
see text for the definition of these hindcasts. (a) Six-month-lead
cross-validated hindcast, and (b) in-sample hindcast. (c) SSA re-
construction of the two main Nifio-3 oscillatory modes. Lines for
all three panels are defined in the legend of each.

features of ENSO, with positive SST anomalies having
larger amplitude than the negative anomalies, while the
PDF of the linear inverse model’s time series is normal
(see left panels in Fig. 3). The linear model tends, there-
fore, to underestimate the magnitude of El Nifio events
and to overestimate that of La Nifia events.

To illustrate this point we compare the time series
fextr(f) for both cross-validated hindcasts in Fig. 7a,
while the in-sample hindcasts are shown in Fig. 7b. In
the latter, both models were trained and verified on the
entire available record. We only show the 1970-2003
segment of the record, which contains the major La
Nifia and El Nifio events. Given a short historical rec-
ord, the in-sample hindcast skill helps us to analyze the
potential for future model performance, and represents
the best-possible prediction.

Close examination of Fig. 7b shows that the in-
sample hindcast curve f..(¢) for the quadratic model
matches the observed time series value of roughly 3.7°C
at the peak of the 1997/98 El Nifio, while the linear
model underestimates it by about 1°C. This comparison
suggests that our quadratic inverse model has the po-
tential to predict strong ENSO events, like the 1997/98
El Nifo, 6 months in advance, with a probability of
20%. In contrast, the probability of predicting the cor-
rect magnitude of this event at such a lead time is van-
ishingly small for the linear inverse model.
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The in-sample hindcasts of both linear and quadratic
models, however, are similar for other large El Nifios
during the 1970-2003 interval. The same is true for the
cross-validated hindcast time series in Fig. 7a, which
shows no advantage of the quadratic over the linear
model for any El Nifio during this interval, including
the 1997/98 event. The magnitude of La Nifias, on the
other hand, is better described by the quadratic model.

This behavior can be understood as follows. In-
sample hindcasts tell us essentially how well the model
simulates the record; they overestimate, therefore, the
model’s predictive skill in a real-time situation. On the
other hand, cross validation usually underestimates
model performance, especially if the underlying time
series contains only a very small number of extreme
events. When such events are excluded from the mod-
el’s training period, they become statistical outliers, and
therefore cannot be well predicted in cross validation.
This seems to be the case for some of the extreme
ENSO events.

The comparison of Figs. 7a and 7b indicates, for ex-
ample, that the 1997/98 El Nifio does not have any
counterpart in the historical record. This uniqueness is
further highlighted in the SSA reconstruction of the
record. In Fig. 7c, we plot, following Jiang et al. (1995),
the reconstruction of the two oscillatory ENSO modes,
QQ and QB. The strongest warm events during the
1970-2003 time interval have the QQ and QB modes
almost in phase, with the 1997/98 event being almost
perfectly phase aligned, even more so than the other
large-amplitude events. Still, the amplitude of the ac-
tual event exceeds the sum of the QQ and OB in-phase
amplitudes, possibly pointing to an additional, highly
nonlinear process that “kicks in” at this level of warm-
ing.

Including additional information in the model, for
instance subsurface temperatures or wind stress, may
help capture such an additional process better, and thus
obtain better forecast skill for extreme ENSO events.
The studies of Xue et al. (2000) and McPhaden (2004)
do suggest that the heat content anomalies along the
equatorial belt are, in fact, an important ENSO predic-
tor, while the work of Jin (1997a,b,c) shows that these
anomalies are out of phase with the SST anomalies. We
plan to include additional physical variables in our fu-
ture work, and to consider carefully their phase rela-
tions to the SST.

2) SEASONAL DEPENDENCE OF THE FORECAST
SKILL: “SPRING BARRIER”

In Fig. 8, we plot the month-to-month distribution of
the skill for the ensemble mean cross-validated hind-
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casts of our best 2-L linear and quadratic model; results
are shown at both 6-month and 3-month lead, with the
target month indicated on the abscissa. Figure 8 con-
firms that our 2-L models, too, exhibits the so-called
spring barrier for prediction. Similar results are ob-
tained for the extreme-event hindcasts (not shown).
The spring barrier is a common problem for other dy-
namical and statistical models as well (Balmaseda et al.
1995). It involves a drop of skill in El Nifo-3 forecasts
with a 3-6-month lead that start in February through
April, with the forecast skill rising again in late summer
and fall. The related spring time drop of lagged auto-
correlation in observed SST anomalies (Flugel and
Chang 1998) is reproduced by both our linear and qua-
dratic models (see Fig. 9), with the linear model match-
ing the observations slightly better.

The seasonal prediction barrier occurs in our models
in spring and early summer and it is consistent with the
seasonal dependence of ENSO variance apparent in the
right panels of Fig. 3 and in the Fig. 4. SST anomalies
are smaller in late winter through summer, and their
evolution in our model at that time is governed primar-
ily by the stochastic forcing; this fact leads to a low
signal-to-noise ratio and, hence, to lower predictability
for the season in question. The opposite is true for the
boreal winter months, when both El Nifio and La Nifa
are at or near peak amplitude and the associated SST
signal is large relative to the noise. The existence of the
spring barrier is thus related to the question, Why are
SST anomalies largest during boreal winter? This ques-
tion is answered by the eigenspectrum analysis of sec-
tion 5.
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F1G. 9. Month-by-month distribution of Nifo-3 lagged autocor-
relations: (a) 645 months of observations since Jan 1950; (b), (c)
same for a 16 125-month-long realization of a linear and quadratic
2-L model, respectively. The lag is on the abscissa, and the initial
month is on the ordinate.

5. Dynamical analysis

In this section, we analyze our inverse models’ dy-
namics in order to explain certain features of the mod-
eled and observed data presented in section 4. In par-
ticular, the existence of two distinct oscillatory modes,
seasonal variations, as well as the spring barrier in the
prediction skill are addressed. We utilize month-by-
month eigenspectrum analysis (section 5a) and Floquet
analysis (section 5b) to interpret the seasonal modula-
tion of the oscillatory modes. Singular-vector analysis
(section Sc¢) is used to compute the optimum initial pat-
terns that grow into the most energetic Floquet mode.
The nonnormal growth reaches its maximum always in
winter, thus providing the observed seasonal depen-
dence of prediction skill.

a. Month-by-month linear analysis

To better understand the seasonal dependence of our
models’ forecast skill and oscillatory behavior, we ana-
lyze the eigenmodes of the linear operator B in Eq.
(6) for a linear 20-component 2-L model. Since B is
periodic with a period of 12 months, we compute a set
of eigenvalues and eigenvectors for each of the 12 cal-
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F1G. 10. Month-by-month stability analysis for a 20-component 2-L linear model. (a) Evolution of the decay
times and periods of the QQ and QB eigenmodes. (b), (c) Real and imaginary component of the QQ mode in Dec;
(d), (e) same for the QB mode in May. The contour levels are 0.1°C.

endar months. The complex eigenvalues represent
damped oscillations with a decay time and period given
by the real and imaginary part of the corresponding
eigenvalue.

We have found two robust eigenmodes, whose damp-
ing times change from month to month, while their
periods and spatial patterns stay fairly similar. These
two modes are always ranked in the top three least-
damped eigenmodes for any calendar month in which
they have been identified; they are associated with the
QQ and QB modes of ENSO and are shown in Fig. 10.
Virtually identical leading modes are obtained when
analyzing the eigenspectrum of the linear part of the
2-L. quadratic model (not shown). The other eigen-
modes are much more sensitive to the season and
change significantly from one model to the other.

Our QQ and QB modes are identified based on high
month-to-month pattern correlation. Figure 10a shows
how the decay time and period of each mode change
through the year. The QQ mode has a period ranging
from 47 to 58 months and is least damped in December,
with a decay time of 14.3 months; it is not identifiable in
summer. In contrast, a more strongly damped QB mode

is present in all months, and has a period of about 25
months, except in June when its period is of 40 months.
It is least damped is spring and early summer, when its
decay time is about 5 months. Penland and Sardesh-
mukh (1995) obtained a 48-month ENSO mode, similar
to the QQ mode here, using an LIM for the tropical
Pacific only. The latter analysis, however, included nei-
ther the extratropics nor seasonal dependence.

The real and imaginary parts of each oscillatory
mode’s complex conjugate eigenvector pair form its
spatial patterns and are in phase quadrature. They are
shown in Figs. 10b and 10c and Figs. 10d and 10e for the
QQ and QB modes, in January and May, respectively,
when they are least damped.

The QQ component is very similar to the 4-yr oscil-
latory ENSO mode identified by multichannel SSA
analysis (M-SSA) of an SST global dataset by Ghil et al.
(2002). This mode consists of a “horseshoe” pattern
over the extratropical Pacific, together with a classic El
Niflo pattern over the tropical Pacific. Amplitudes else-
where are weak, although there is some simultaneous
warming in the northwestern Indian Ocean and over
the tropical Atlantic during an El Nifio. The spatial
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patterns of the QQ and QB modes in our regression
models are fairly similar to each other, in agreement
with the findings of Moron et al. (1998) and Zhang et al.
(1998), who identified robust 2- and 4-yr periodicities
using M-SSA on global SSTs.

b. Floquet analysis

Since we include the march of seasons in our models,
the linear operator in each model is periodic in time.
This 12-month period is comparable with the growth or
decay times of the QQ and QB modes obtained in the
previous subsection, as well as with their periods. The
month-by-month stability analysis of section 5a is thus
not really self-consistent and we apply therefore Flo-
quet analysis to obtain the leading oscillatory modes of
the linear system

x = BO()x, (7)

where B (¢) is periodic with period T = 12 months, as
defined in Eq. (6).

The Floquet modes correspond to the eigenvectors
and eigen values of a so-called monodromy matrix
(Iooss and Joseph 1980; Strong et al. 1995; Jin et al.
1996). The monodromy matrix M is defined as the value
taken by the fundamental (also known as the resolvent
or propagator) matrix ®(¢) (Hartman 1982) after inte-
grating for one year the matrix form of the ordinary
differential equation (ODE):

® = BV,
D(0) = I,

(8a)
(8b)

where | is the n X n identity matrix; here n = 40 for our
2-L 20-component model and M = ®(T).

The eigenvalues of the matrix M are called Floquet
multipliers, o; = ¢””, j = 1, 2, ..., n. The Floquet
multipliers are uniquely determined and do not depend
on the month in which you start to integrate the ODE
(8a), while the Floquet exponents o; = (1/T)log(«;) de-
termine the frequency and growth rate of the Floquet
modes X;(f) = e”"Y,(t) but are defined only up to an
additive multiple of i27/T. The periodic Floquet eigen-
vectors, Y(t) = Y,(t + T), describe each mode’s sea-
sonal evolution and are obtained from the eigenvectors
y; of the monodromy matrix: Y,(t) = e*"fob(t)tpj,
My, = ol

Equation (8a) was integrated using an Euler scheme
and time step of one month; the convergence of the
solutions was checked by using a time step of 1 day,
with almost identical results. For our 2-L 20-component
linear model, the least-damped, oscillatory Floquet
mode corresponds to a classic ENSO cycle, with a pe-
riod of 52 months and a decay time of 11 months; we
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refer to it as the ENSO mode. The closest counterpart
of the QB mode in this Floquet analysis has a frequency
of 41 months and it is strongly damped, with a decay
time of 3.4 months. The Floquet analysis of 15-
component models, whether linear or linearized qua-
dratic (i.e., n = 30), yields a leading ENSO mode with
similar spectral and spatial features (not shown).

The spatial-temporal structure of the ENSO mode is
represented by the real and imaginary parts of the least-
damped Floquet vector; these two parts are in phase
quadrature and are shown in Figs. 11a and 11b for Janu-
ary and in Figs. 11c and 11d for June, respectively.
These plots reveal significant seasonal variation of the
ENSO mode, which is consistent with the eigenspec-
trum analysis of B (f) for the individual months
above: the mode reaches its maximum amplitude in
boreal winter, and its minimum in summer.

The simulated Nifio-3 index of the ENSO mode, with
exponential decay suppressed, is shown in Fig. 11e. The
mode’s main cycle of 52 months is amplitude-
modulated by the seasonal cycle of the Floquet eigen-
vectors. The monthly distribution of variance for the
mode’s Nifio-3 index (Fig. 11f) is similar to the one
observed (see Fig. 3a), and simulated in the full model
(Figs. 3b,c).

These analytical results allow us to summarize the
causes behind the spring barrier in ENSO predictabil-
ity. The dominant 4.2-yr oscillatory ENSO signal, rep-
resented either by the QQ mode from section 5a or by
the ENSO mode in the present subsection, is most en-
ergetic in winter and strongly damped in summer; this
results in a drop of predictability during summer. The
QB mode is present throughout the year, but it is both
smaller in amplitude and very strongly damped, so the
predictability associated with this mode is limited. The
seasonal modulation of ENSO mode is explained via
nonnormal growth in the next section.

c¢. Singular vectors

Blumenthal (1991) and Penland and Sardeshmukh
(1995) have related the development of ENSO events
to the nonnormal growth of small perturbations. To
obtain information about optimal nonnormal growth in
the linear part of our models, we applied singular value
decomposition (SVD) to the fundamental matrices
®(7), following Thompson and Battisti (2000):

®(r) = USV™. ©)

The columns of V contain the so-called optimal initial
vectors that achieve a growth equal in magnitude, after
a prescribed time 7, to the corresponding singular val-
ues, which are the elements of the diagonal matrix S,
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while the final structure of the evolution over the time
7 is given by the columns of the U matrix.

Figure 12a shows the contour map of the largest sin-
gular value of ®(¢, 7) for each initial calendar month ¢
and up to a lead time of 7 = 20 month. For a given
starting month, maximum growth always occurs in the
following boreal winter. The absolute maximum in
growth, by a factor of 3, corresponds to starting condi-
tions in February and a lead time of 10 months. The
corresponding optimal initial and final patterns are
shown in Figs. 12b and 12c, respectively. The pattern at
the maximum-growth point strongly resembles a Flo-
quet ENSO mode (Figs. 11a,b), or a fully developed
ENSO event. Having maximum growth in winter leads
naturally to the higher variance of the Floquet ENSO
mode at the same time, explaining Figs. 11a, 11c, and
11f.

Both our 2-L model’s Floquet ENSO mode and sin-
gular-vector behavior resemble to a certain extent
those computed by Thompson and Battisti (2001) for
their stochastically forced, linear model, but are far

from identical to them. In the latter, the growth, though
high for a February start, reaches its maximum for a
May start, while in our case the month of maximum
growth is February. Our results provide, therewith, a
better explanation of the observed seasonal variance
distribution, as well as of the spring barrier in predic-
tion skill.

Our optimum final spatial pattern agrees quite well
with that of Penland and Sardeshmukh (1995), and rep-
resents a fully developed ENSO event. Our optimum
initial spatial pattern has one positive regions that con-
tains overall maximum and it is southwest-northeast
oriented; this region starts around (20°S, 150°W) and
ends near equatorial Africa. Another region is more or
less parallel to the previous one, but it starts around the
date line, on the equator and then ends near Baja Cali-
fornia, Mexico. These features are very similar to the
results of Penland and Sardeshmukh (1995), while
Thompson and Battisti (2001) obtained only one strong
maximum in the southeastern Equatorial Pacific.

The influence of ENSO events on SST variability in
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other ocean basins, including the North Pacific, has
been studied extensively by assuming an “atmospheric
bridge” mechanism (Alexander et al. 2002; Lau and
Nath 2001). In our results, the North Pacific exhibits a
strong center of action in both optimum initial pattern
(Fig. 12b), and ENSO Floquet mode (Figs. 11a-d). Un-
fortunately, earlier ENSO predictability studies (Pen-
land and Sardeshmukh 1995; Thompson and Battisti
2001) included neither the North Pacific nor the North
Atlantic and therefore it is not possible to compare our
results over these ocean basins with theirs. It thus re-
mains unclear whether SSTs in the northeastern North
Pacific play a truly significant role in the nonnormal
growth on the ENSO mode, or whether they are mere
statistical artifacts of our analysis, being only passively

influenced by SST variability in the tropical Pacific via
the “atmospheric bridge.”

6. Summary and discussion

We have applied the methodology of KKG to con-
struct empirical, linear and nonlinear, inverse stochastic
models for the analysis of global SST evolution with an
emphasis on ENSO variability. Overall, our models re-
produce well the oscillatory, seasonally modulated be-
havior of observed ENSO phenomena (section 1). Our
method (section 2) generalizes in two ways linear in-
verse modeling (LIM; Penland 1989, 1996; Penland and
Ghil 1993; Penland and Sardeshmukh 1995; Penland
and Matrosova 1998; Johnson et al. 2000b; Winkler et
al. 2001) approach.
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The LIM approach considers the dynamics to be lin-
ear, stable, and stochastically forced; it estimates the
linear deterministic operator

t+r o)
D1, 1) = eJ’, B sy

as well as the structure of the stochastic forcing, directly
from observations by multiple linear regression (MLR),
while assuming the latter forcing to be white in time.
The modifications we introduce to this methodology
relax the assumptions of linearity and white noise and
lead to the construction of multilevel, polynomial in-
verse models. Another novel aspect of our models is
the inclusion of multiplicative and deterministic sea-
sonal forcing, instead of the seasonal variability of the
additive forcing in LIM (Penland 1996).

Linear and quadratic, one-level (1-L) and two-level
(2-L) models were obtained in the phase space of the
leading EOFs of the 1950-2003 global SST record (Ka-
plan et al. 1998; see section 3 here). The number of
variables to include in each model, as well as the order
of the model’s nonlinearity, was determined by cross
validation to maximize the model’s hindcast skill. The
model was also optimized in terms of other statistical
properties, such as the probability distribution function
(PDF) and power spectra of the observed and modeled
SSTs.

The linear and nonlinear 1-L models’ residual forcing
involves serial correlations due, among other things, to
the dependence of the stochastic forcing on the mod-
eled flow. The residual forcing of our 2-L, quadratic
model is indeed a spatially correlated noise process that
is white in time. In section 4a, we have shown that the
2-L model has a significantly better cross-validated
hindcast skill than its 1-L. counterpart at lead times
longer than 4 months (Fig. 2), in particular over the
equatorial Pacific, as well as over the Indian Ocean.
The 1-L linear model used here is analogous to the LIM
used for ENSO prediction by C. Penland and associates
(Penland and Sardeshmukh 1995; Penland 1996). Our
2-L model, on the other hand, explicitly represents the
low-frequency flow’s feedback on the noise statistics
(KKG).

The statistical properties of the linear and quadratic
2-L models were considered in section 4b. In our mod-
els, the linear part of the deterministic dynamics is sea-
sonally dependent, while in the LIMs of C. Penland and
collaborators the seasonal dependence enters into the
covariance of the additive noise. Both our linear and
quadratic models correctly simulate the seasonal de-
pendence of ENSO. We have tried several other meth-
odologies, by adding a purely deterministic seasonal
forcing to, or including the seasonal forcing into both
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levels of, our inverse model. Any of these modifications
degrade the performance of the corresponding models.

We have shown that our 2-L. quadratic model is doing
a better job than the linear one in capturing the main
non-Gaussian features of the distribution of observed
SST anomalies (Fig. 3). The observed values of skew-
ness and kurtosis for the Nifio-3 PDF lie within 95% of
the possible range for an ensemble of 100 realizations
of the quadratic model (Fig. 3d). In contrast, for a simi-
lar ensemble of linear models, the observed values lie
outside the 95% confidence limits of the models’ dis-
tribution for these PDF parameters (Fig. 3e). The qua-
dratic model captures better the seasonal dependence
of observed skewness, which is strongly biased toward
larger warm events during boreal winter (Fig. 4). On
the other hand, the 2-L linear model appears to do
slightly better in capturing the seasonal dependence of
the spread of the distribution.

The simulations of our linear, as well as nonlinear
models are characterized by the presence of two oscil-
latory modes, a dominant quasi-quadriennial (QQ) and
a less energetic quasi-biennial (QB) one; their respec-
tive periods are close to the observed ones (Figs. 5a,b).
The periods of these modes, in observed data as well as
model simulations, exhibit an interdecadal variation, as
revealed by the wavelet spectra of the corresponding
time series (Figs. 5c,d).

The predictive potential of our linear and quadratic
inverse models was examined in section 4c using both
in-sample hindcasts and cross-validated hindcasts. The
skill for 6-month lead in Fig. 6a is comparable to the
cross-validated skill of other statistical models (Xue et
al. 2000; Johnson et al. 2000b). The quadratic model
outperforms its linear counterpart in predicting the
magnitude of extreme events (Fig. 6). In particular, the
correct magnitude of the 1997/98 El Nifio event is pre-
dicted 6 months in advance, with a probability of about
20% for an in-sample hindcast mode. In contrast, the
probability of such a prediction using the linear model
is negligible (Fig. 7b). The ability of the quadratic
model to forecast large positive SST anomalies is con-
sistent with the non-Gaussian, skewed aspect of its
simulated-data histograms. This advantage of the qua-
dratic-model forecast over the linear one is less pro-
nounced for other extreme events.

The SSA reconstruction of the two major oscillatory
ENSO modes suggests that the 1997/98 event is char-
acterized by a particularly exact phase alignment of the
QQ and QB modes (Fig. 7c). The dynamics of this
event might therefore be slightly different from that of
its previous counterparts, for which the rising phases of
the two modes did not coincide as precisely. In contrast
to extreme SST anomalies, small-amplitude anomalies
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are predicted equally well by the linear and quadratic
2-L models, as expected. Therefore, when averaged
over the whole time series, the predictive skills of the
linear and quadratic models are very close.

In summary, our 2-L. quadratic model is clearly a
better fit to the data in terms of non-Gaussian features
(Figs. 3,4), but its advantages are less clear in terms of
cross-validated hindcast skill (Fig. 6): the anomaly cor-
relations are not as good, while the rms errors in ex-
treme-event prediction show a slight improvement.

The seasonal distribution of the cross-validated fore-
cast skill for the 2-L. quadratic and linear models (Fig.
8) exhibit a distinct “spring barrier.” This spring barrier
in prediction skill is a feature of all statistical and dy-
namical models used for ENSO forecasts (Latif et al.
1998). Balmaseda et al. (1995) connected the interdec-
adal modulations in the sharpness of the spring barrier
to the degree of phase locking between ENSO and the
annual cycle. Jin et al. (1994, 1996) found that in an
unstable, nonlinear model based on that of Zebiak and
Cane (1987), phase locking between the ENSO mode
and the annual cycle does occur and produces several
ENSO features not reproduced by linear models (see
also Ghil and Robertson 2000; Tziperman et al. 1994).
Blumenthal (1991) has related the existence of the
spring barrier to a seasonal dependence of nonnormal
error growth in a coupled ocean-atmosphere model.
Thompson and Battisti (2001) concluded that the pres-
ence of an annual cycle in linear models is also impor-
tant for the seasonal cycle in ENSO variance and the
presence of a spring barrier in such models.

The spring barrier of cross-validated hindcast skill
(Fig. 8) and lagged autocovariance (Fig. 9) in our mod-
els is consistent with the seasonal cycle of observed and
simulated ENSO variance: for target months from the
late spring to midsummer, during which the observed
SST anomalies are weak, the signal-to-noise ratio is
small, and the models’ hindcast skill deteriorates.

To better understand the seasonal dependence of
both simulation and prediction results in our models,
stability analyses of our 2-L linear model, as well as of
a linearized quadratic-model version, were carried out
for each calendar month. These analyses show that the
two oscillatory modes found in the simulations and ob-
servations are associated with the models’ most robust
linear eigenmodes. The QQ mode is the least-damped
one in boreal winter, but cannot be identified in sum-
mer, while the QB mode is present throughout the
whole year, but is strongly damped (Fig. 10).

Floquet analysis provides more complete and self-
consistent information about the seasonal evolution of
the oscillatory modes. This analysis shows that the
least-damped oscillatory mode, which is robust in both
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linear and nonlinear models, has a spatial pattern and
frequency similar to the simulated QQ mode (Fig. 11).
This ENSO mode of the Floquet analysis has its maxi-
mum amplitude in boreal winter, while being strongly
damped in summer. Using SVD decomposition of the
propagator matrices (Fig. 12), we found that non-
normal error growth helps explain the seasonal modu-
lation of this ENSO mode. Out SVD results comple-
ment those of Thompson and Battisti (2000), who de-
veloped a much more detailed, but purely linear
stochastic-dynamical model by linearizing the Zebiak
and Cane (1987) intermediate coupled model and driv-
ing it with additive white-noise forcing. Non-normal
growth in our model peaks in February, thus leading to
a higher variance of the ENSO mode in winter time,
while Thompson and Battisti (2001) obtained maxi-
mum growth for a May start. It is left for future re-
search to explain how the dynamic nonlinearities of our
quadratic model cause the preferred growth of warm
events.

Based on combined statistical and hindcast measures,
we conclude that our quadratic 2-L model with multi-
plicative seasonal forcing provides a good dynamical
representation of the ENSO phenomenon and some
improvement in the forecasting of extreme events. The
physical and dynamical reasons for this competitive
performance of such a simple, purely data-based model
require further study.

Acknowledgments. It is a pleasure to thank Lisa God-
dard of the International Research Institute for Climate
Prediction for providing results on the cross-validated
hindcast skill of the Constructed Analog Model, which
allowed us to conclude that the hindcast skill of our 2-L
quadratic model is quite competitive over the long run.
Two anonymous reviewers gave us excellent and con-
structive advice. This research was supported by NSF
Grant ATM-0081321 (MG and DK), as well as NSF
Grant OCE-02-221066 and DOE Grant 98ER6215 (SK
and AWR).

REFERENCES

Alexander, M. A., 1. Bladé, M. Newman, J. R. Lanzante, N.-C.
Lau, and J. D. Scott, 2002: The atmospheric bridge: The in-
fluence of ENSO teleconnections on air—sea interaction over
the global oceans. J. Climate, 15, 2205-2231.

Allen, M. R., and L. A. Smith, 1996: Monte Carlo SSA: Detecting
irregular oscillations in the presence of colored noise. J. Cli-
mate, 9, 3373-3404.

Balmaseda, M. A., M. K. Davey, and D. T. Anderson, 1995: Dec-
adal and seasonal dependence of ENSO prediction skill. J.
Climate, 8, 2705-2715.

Barnston, A. G., and Coauthors, 1994: Long-lead seasonal fore-



1 NOVEMBER 2005

casts—Where do we stand? Bull. Amer. Meteor. Soc., 75,
2097-2114.

——, M. H. Glantz, and Y. He, 1999: Predictive skill of statistical
and dynamical climate models in forecasts of SST during the
1998-97 El Nifio episode and the 1998 La Nifna onset. Bull.
Amer. Meteor. Soc., 80, 217-244.

Blumenthal, M. B., 1991: Predictability of a coupled atmosphere—
ocean model. J. Climate, 4, 766-784.

Burgers, G., and D. B. Stephenson, 1999: The “normality” of El
Nifno. Geophys. Res. Lett., 26, 1027-1030.

Chao, Y., M. Ghil, and J. C. McWilliams, 2000: Pacific interdec-
adal variability in this century’s sea surface temperatures.
Geophys. Res. Lett., 27, 2261-2264.

Dettinger, M. D., M. Ghil, C. M. Strong, W. Weibel, and P. Yiou,
1995: Software expedites singular-spectrum analysis of noisy
time series. Eos, Trans. Amer. Geophys. Union, 76, 12-21.

Flugel, M., and P. Chang, 1998: Does the predictability of ENSO
depend on the seasonal cycle? J. Atmos. Sci., 55, 3230-3243.

Fraedrich, K., 1986: Estimating the dimension of weather and
climate attractors. J. Atmos. Sci., 43, 419-432.

Ghil, M., and K. C. Mo, 1991: Intraseasonal oscillations in the
global atmosphere. Part I: Northern Hemisphere and tropics.
J. Atmos. Sci., 48, 752-779.

——, and N. Jiang, 1998: Recent forecast skill for the El Nifio/
Southern Oscillation. Geophys. Res. Lett., 25, 171-174.
——, and A. W. Robertson, 2000: Solving problems with GCMs:
General circulation models and their role in the climate mod-
eling hierarchy. General Circulation Model Development:
Past, Present and Future, D. Randall, Ed., Academic Press,

285-325.

——, and Coauthors, 2002: Advanced spectral methods for cli-
matic time series. Rev. Geophys., 40, 1003, doi:10.1029/
2000RG000092.

Goddard, L., and D. G. DeWitt, 2005: Seeking progress in El Nifio
prediction. U.S. CLIVAR, Vol. 3, No. 1, U.S. CLIVAR Of-
fice, 1-5.

Grieger, B., and M. Latif, 1994: Reconstruction of the El Nifio
attractor with neural networks. Climate Dyn., 10, 267-276.

Hannachi, A., D. B. Stephenson, and K. R. Sperber, 2003: Prob-
ability-based methods for quanfifying nonlinearity in the
ENSO. Climate Dyn., 20, 241-256.

Hartman, P., 1982: Ordinary Differential Equations. Birkhaeuser,
612 pp.

Hoerling, M. P., A. Kumar, and M. Zhong, 1997: El Nifo, La
Nifia, and the nonlinearity of their teleconnections. J. Cli-
mate, 10, 1769-1786.

Hoskuldsson, A., 1996: Prediction Methods in Science and Tech-
nology. Thor Publishing.

Hsieh, W. W, and B. Tang, 1998: Applying neural network mod-
els to prediction and data analysis in meteorology and ocean-
ography. Bull. Amer. Meteor. Soc., 79, 1855-1870.

Iooss, G., and D. D. Joseph, 1980: Elementary Stability and Bifur-
cation Theory. Springer-Verlag, 286 pp.

Jiang, N., J. D. Neelin, and M. Ghil, 1995: Quasi-quadrennial and
quasi-biennial variability in the equatorial Pacific. Climate
Dyn., 12, 101-112.

Jin, F.-F., 1997a: A theory of interdecadal climate variability of
the North Pacific ocean—atmosphere system. Climate Dyn.,
10, 1821-1835.

——, 1997b: An equatorial ocean recharge paradigm for ENSO.
Part I: Conceptual model. J. Atmos. Sci., 54, 811-829.

——, 1997c: An equatorial ocean recharge paradigm for ENSO.

KONDRASHOV ET AL.

4443

Part II: A stripped-down coupled model. J. Atmos. Sci., 54,
830-847.

——, J.D. Neelin, and M. Ghil, 1994: El Nifio on the Devil’s
Staircase: Annual subharmonic steps to chaos. Science, 264,
70-72.

——, ——, and ——, 1996: El Nino/Southern Oscillation and the
annual cycle: Subharmonic frequency-locking and aperiodic-
ity. Physica D, 98, 442-465.

Johnson, S. D., D. S. Battisti, and E. S. Sarachik, 2000a: Empiri-
cally derived Markov models and prediction of tropical Pa-
cific sea surface temperature anomalies. J. Climate, 13, 3-17.

——, ——, and ——, 2000b: Seasonality in an empirically derived
Markov model of tropical Pacific sea surface temperature
anomalies. J. Climate, 13, 3327-3335.

Kalnay, E., 2003: Atmospheric Modeling, Data Assimilation and
Predictability. Cambridge University Press, 341 pp.

Kaplan, A., M. Cane, Y. Kushnir, A. Clement, M. Blumenthal,
and B. Rajagopalan, 1998: Analyses of global sea-surface
temperature 1856-1991. J. Geophys. Res., 103, 18 567-18 589.

Keppenne, C. L., and M. Ghil, 1992: Adaptive filtering and pre-
diction of the Southern Oscillation index. J. Geophys. Res.,
97, 20 449-20 454.

Kiehl, J. T., and Coauthors, 2003: Community Climate System
Model science plan. National Center for Atmospheric Re-
search.

Kondrashov, D., K. Ide, and M. Ghil, 2004: Weather regimes and
preferred transition paths in a three-level quasigeostrophic
model. J. Atmos. Sci., 61, 568-587.

Kravtsov, S., D. Kondrashov, and M. Ghil, 2005: Multilevel re-
gression modeling of nonlinear processes: Derivation and ap-
plications to climate variability. J. Climate, 18, 4404-4424.

Landsea, C. W., and J. A. Knaff, 2000: How much “skill” was
there in forecasting the very strong 1997-98 El Nifo? Bull.
Amer. Meteor. Soc., 81, 2107-2120.

Latif, M., and Coauthors, 1998: A review of the predictability and
prediction of ENSO. J. Geophys. Res., 103 (C7), 14 375-
14 393.

Lau, N.-C., and M. J. Nath, 2001: Impact of ENSO on SST vari-
ability in the North Pacific and North Atlantic: Seasonal de-
pendence and role of extratropical sea—air coupling. J. Cli-
mate, 14, 2846-2866.

Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos.
Sci., 20, 130-141.

Mardia, K. V., 1980: Tests of univariate and multivariate normal-
ity. Handbook of Statistics, Vol. 1, P. R. Krishnaiah, Ed.,
North-Holland, 279-320.

Marshall, J., and F. Molteni, 1993: Toward a dynamical under-
standing of atmospheric weather regimes. J. Atmos. Sci., 50,
1792-1818.

Mason, S.J., and G. M. Mimmack, 2001: Comparison of some
statistical methods of probabilistic forecasting of ENSO. J.
Climate, 15, 8-29.

McCullagh, P., and J. A. Nelder, 1989: Generalized Linear Mod-
els. Chapman and Hall, 511 pp.

McPhaden, M. J., 2004: Evolution of the 2002-03 El Nifio. Bull.
Amer. Meteor. Soc., 85, 677-695.

Meyer, Y., 1992: Wavelets and Operators. Cambridge University
Press, 223 pp.

Moron, V., R. Vautard, and M. Ghil, 1998: Trends, interdecadal
and interannual oscillations in global sea-surface tempera-
tures. Climate Dyn., 14, 545-569.

Neelin, J. D., M. Latif, and F.-F. Jin, 1994: Dynamics of coupled



4444

ocean—atmosphere models: The tropical problem. Annu. Rev.
Fluid Mech., 26, 617-659.

——, D. S. Battisti, A. C. Hirst, F.-F. Jin, Y. Wakata, T. Yama-
gata, and S. Zebiak, 1998: ENSO theory. J. Geophys. Res.,
103 (C7), 14 261-14 290.

Penland, C., 1989: Random forcing and forecasting using principal
oscillation pattern analysis. Mon. Wea. Rev., 117, 2165-2185.

——, 1996: A stochastic model of Indo-Pacific sea-surface tem-
perature anomalies. Physica D, 98, 534-558.

——, and M. Ghil, 1993: Forecasting Northern Hemisphere 700-
mb geopotential height anomalies using empirical normal
modes. Mon. Wea. Rev., 121, 2355-2372.

——, and P. D. Sardeshmukh, 1995: The optimal growth of tropi-
cal sea-surface temperature anomalies. J. Climate, 8, 1999—
2024.

——, and L. Matrosova, 1998: Prediction of tropical Atlantic sea-
surface temperatures using linear inverse modeling. J. Cli-
mate, 11, 483-496.

——, and , 2001: Expected and actual errors of linear inverse
model forecasts. Mon. Wea. Rev., 129, 1740-1745.

Philander, S. G. H., 1990: El Nifio, La Nina, and the Southern
Oscillation. Academic Press, 286 pp.

Preisendorfer, R. W., 1998: Principal Component Analysis in Me-
teorology and Oceanography. Elsevier, 425 pp.

Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flan-
nery, 1994: Numerical Recipes. 2d ed. Cambridge University
Press, 994 pp.

Rasmusson, E. M., X. Wang, and C.F. Ropelewski, 1990: The
biennial component of ENSO variability. J. Mar. Syst., 1,
71-96.

Sardeshmukh, P. D., G. P. Compo, and C. Penland, 2000: Changes
of probability associated with El Nifo. J. Climate, 13, 4268—
4286.

Strang, G., 1989: Wavelets and dilation equations: A brief intro-
duction. SIAM Rev., 31, 614-627.

Strong, C. M., F.-F. Jin, and M. Ghil, 1995: Intraseasonal oscilla-
tions in a barotropic model with annual cycle, and their pre-
dictability. J. Atmos. Sci., 52, 2627-2642.

Tang, B. Y., W. W. Hsieh, A. H. Monahan, and F. T. Tangang,
2000: Skill comparisons between neural networks and canoni-
cal correlation analysis in predicting the equatorial Pacific sea
surface temperatures. J. Climate, 13, 287-293.

Tangang, F. T., B. Tang, A. H. Monahan, and W. W. Hsieh, 1998:
Forecasting ENSO events: A neural network—extended EOF
approach. J. Climate, 11, 29-41.

JOURNAL OF CLIMATE

VOLUME 18

Thompson, C. J., and D. S. Battisti, 2000: A linear stochastic dy-
namical model of ENSO. Part I: Model development. J. Cli-
mate, 13, 2818-2883.

——, and , 2001: A linear stochastic dynamical model of
ENSO. Part II: Analysis. J. Climate, 14, 445-466.

Timmermann, A., H. U. Voss, and R. Pasmanter, 2001: Empirical
dynamical system modeling of ENSO using nonlinear inverse
techniques. J. Phys. Oceanogr., 31, 1579-1598.

Trenberth, K., and J. W. Hurrel, 1994: Decadal atmosphere—
ocean variations in the Pacific. Climate Dyn., 9, 303-319.
Tziperman, E., L. Stone, M. Cane, and H. Jarosh, 1994: El Nino
chaos: Overlapping of resonances between the seasonal cycle
and the Pacific ocean—atmosphere oscillator. Science, 264,

72-74.

Vautard, R., and M. Ghil, 1989: Singular spectrum analysis in
nonlinear dynamics, with applications to paleoclimatic time
series. Physica D, 35, 395-424.

——, P. Yiou, and M. Ghil, 1992: Singular-spectrum analysis: A
toolkit for short, noisy chaotic signals. Physica D, 58, 95-126.

Von Mises, R., 1964: Mathematical Theory of Probability and Sta-
tistics. Academic Press, 694 pp.

Wang, B., and Y. Wang, 1996: Temporal structure of the Southern
Oscillation as revealed by waveform and wavelet analysis. J.
Climate, 9, 1586-1598.

Weiss, J. P., and J. B. Weiss, 1999: Quantitying persistence in
ENSO. J. Atmos. Sci., 56, 2737-2760.

Wetherill, G. B., 1986: Regression Analysis with Applications.
Chapman and Hall, 311 pp.

Winkler, C. R., M. Newman, and P. D. Sardeshmukh, 2001: A
linear model of wintertime low-frequency variability. Part I:
Formulation and forecast skill. J. Climate, 14, 4474-4494.

Wold, S., A. Ruhe, H. Wold, and W. J. Dunn III, 1984: The col-
linearity problem in linear regression: The Partial Least
Square approach to generalized inverses. SIAM J. Sci. Stat.
Comput., 5, 735-743.

Xue, Y., A. Leetma, and M. Ji, 2000: ENSO prediction with
Markov models: The impact of sea level. J. Climate, 13, 849—
871.

Yiou, P., D. Sornette, and M. Ghil, 2000: Data-adaptive wavelets
and multi-scale SSA. Physica D, 142, 254-290.

Zebiak, S. E., and M. A. Cane, 1987: A model El-Nifio-Southern
Oscillation. Mon. Wea. Rev., 115, 2262-2278.

Zhang, X., J. Sheng, and A. Shabbar, 1998: Modes of interannual
and interdecadal variability of Pacific SST. J. Climate, 11,
2556-2569.




