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ABSTRACT

This paper constructs and analyzes a reduced nonlinear stochastic model of extratropical low-frequency
variability. To do so, it applies multilevel quadratic regression to the output of a long simulation of a global
baroclinic, quasigeostrophic, three-level (QG3) model with topography; the model’s phase space has a
dimension of O(10%).

The reduced model has 45 variables and captures well the non-Gaussian features of the QG3 model’s
probability density function (PDF). In particular, the reduced model’s PDF shares with the QG3 model its
four anomalously persistent flow patterns, which correspond to opposite phases of the Arctic Oscillation
and the North Atlantic Oscillation, as well as the Markov chain of transitions between these regimes. In
addition, multichannel singular spectrum analysis identifies intraseasonal oscillations with a period of 35-37
days and of 20 days in the data generated by both the QG3 model and its low-dimensional analog.

An analytical and numerical study of the reduced model starts with the fixed points and oscillatory
eigenmodes of the model’s deterministic part and uses systematically an increasing noise parameter to
connect these with the behavior of the full, stochastically forced model version. The results of this study
point to the origin of the QG3 model’s multiple regimes and intraseasonal oscillations and identify the

connections between the two types of behavior.

1. Introduction

We analyze the output of a global, three-level, quasi-
geostrophic (QG3) atmospheric model with topogra-
phy (Marshall and Molteni 1993; D’Andrea and Vau-
tard 2001; Kondrashov et al. 2004). As shown by these
authors, the QG3 model has a fairly realistic climatol-
ogy and rich variability, which also compares favorably
with atmospheric behavior observed in Northern Hemi-
sphere (NH) midlatitude flows. In addition to synoptic
variability associated with baroclinic eddies, the model
is characterized on longer time scales by the existence
of a few persistent and recurrent flow patterns, or
weather regimes (Reinhold and Pierrehumbert 1982;
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Legras and Ghil 1985; Molteni 2002), as well as by in-
traseasonal oscillations (Ghil and Robertson 2000,
2002; Kondrashov et al. 2004).

These coarse-grained features of the model’s low-
frequency variability (LFV) may be better understood
by using reduced models, which have considerably
fewer degrees of freedom. Such models can accurately
represent both linear and nonlinear aspects of the full
model’s LFV, while parameterizing the effect of higher-
frequency, synoptic transients on LFV (Robinson 1996,
2000; Lorenz and Hartmann 2001, 2003; Kravtsov et al.
2003, 2005a). In this paper, we construct and analyze
such a reduced nonlinear model, which is based solely
on the output of a long QG3 simulation and involves a
stochastic parameterization of the synoptic eddies’ ef-
fect on the full model’s LFV (Kravtsov et al. 2005b).

To construct reduced dynamical models, one often
rewrites the full dynamical model equations in terms of
empirical orthogonal functions (EOFs; Preisendorfer
1988) derived from a long simulation of the latter. The
equations in this basis are then truncated by retaining
only a few leading EOFs that represent large-scale,
low-frequency flow (Rinne and Karhila 1975; Schubert
1985; Sirovich and Rodriguez 1987; Mundt and Hart
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1994; Selten 1995, 1997), while the residual variance
associated with the remaining EOFs is usually treated
as random forcing. Alternatively, one can develop a
deterministic, flow-dependent parameterization of
these fast unresolved processes based on the library of
differences between the tendency of the full and trun-
cated models (D’Andrea and Vautard 2001; D’Andrea
2002). Yet another approach to this closure problem,
which is mathematically rigorous in the limit of signifi-
cant scale separation, has been developed by Majda et
al. (1999, 2001, 2002, 2003). Franzke et al. (2005) have
recently applied this approach to a barotropic model on
the sphere, with a T21 resolution, while C. Franzke and
A. Majda (2005, personal communication) have applied
it to the QG3 model.

The closure problem above can be effectively ad-
dressed in a data-driven, rather than model-driven ap-
proach, by using inverse stochastic models; these mod-
els rely almost entirely on the dataset’s information
content, while making only minimal assumptions about
the underlying dynamics. The simplest type of inverse
stochastic model is the so-called linear inverse model
(LIM; Penland 1989, 1996; Penland and Ghil 1993), in
which the dependence of the state vector’s time deriva-
tives on the state vector itself is assumed to be linear,
while the time-dependent flow is forced by spatially
correlated white noise. LIMs have shown some success
in predicting El Nino-Southern Oscillation (ENSO;
Penland and Sardeshmukh 1995; Johnson et al. 2000),
tropical Atlantic sea surface temperature variability
(Penland and Matrosova 1998), as well as extratropical
atmospheric variability (Winkler et al. 2001).

Kravtsov et al. (2005b) have recently developed gen-
eralizations of LIMs that relax the assumptions of
model linearity and of the noise being white in time.
Colored noise, in particular red noise, can be accom-
modated by allowing additional model levels, which
permit one to achieve truly white noise at the last level;
model nonlinearities are accommodated in the deter-
ministic part of the first level. Such nonlinear, multiple-
level inverse models have proven useful in modeling
LFV of NH geopotential height anomalies (Kravtsov et
al. 2005b), as well as tropical sea surface temperature
variability (Kondrashov et al. 2005). In the present pa-
per we apply methodology of Kravtsov et al. (2005b)
and of Kondrashov et al. (2005) to obtain reduced ana-
logs of the QG3 model. The best reduced model so
obtained is then used to shed light on the full model’s
LFV.

The paper is organized as follows. In section 2, we
describe the experimental setup of the QG3 model and
the statistical methods used to analyze its behavior; the
multilevel regression modeling technique used to con-
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struct the reduced model is reviewed in the appendix.
An excellent match between the statistical properties of
the full and reduced models is documented in section 3,
in terms of both intraseasonal oscillations and multiple
flow regimes. In section 4 we interpret the results of
section 3 by examining quasi-stationary states and lin-
ear eigenmodes of the deterministic part of the reduced
model, and study the behavior of this model as a func-
tion of the stochastic forcing amplitude. Concluding re-
marks follow in section 5.

2. Data and methodology

We analyze the daily output from a perpetual-winter
simulation that is 54 000 days long and was described in
detail by Kondrashov et al. (2004). Each of the three
levels of the QG3 model has 1024 grid points in the NH.
Since the model’s LFV is equivalent barotropic, we ap-
ply principal component (PC) analysis to its NH 500-
hPa streamfunction anomalies to reduce the dataset’s
dimensionality; in computing EOFs, the anomalies are
weighted by the cosine of the latitude (Branstator
1987).

We study the QG3 model’s behavior in the phase
space spanned by its leading EOFs by applying two
distinct types of statistical data analysis: probability
density function (PDF) estimation via Gaussian mix-
tures (Smyth et al. 1999; Hannachi and O’Neil 2001;
Kondrashov et al. 2004) and the multichannel version
of singular spectrum analysis (M-SSA; see Ghil et al.
2002 and references therein). These two types of analy-
sis correspond to two complementary descriptions of
LFV: (i) the episodic one in terms of anomalously per-
sistent multiple flow regimes, and the Markov chain of
transitions between them; and (ii) the one that empha-
sizes low-frequency oscillations (Ghil and Robertson
2002).

The weather regimes correspond to the k clusters
obtained by the Gaussian mixture analysis applied in
the subspace of d leading EOFs. The optimal number
k* of clusters is determined using a built-in criterion,
based on cross-validated log-likelihood estimates. Each
data point has a degree of membership in several clus-
ters, depending on its position with respect to each clus-
ter centroid and the weight of that cluster. Based on a
combination of these two criteria, one can associate
each point with a unique cluster and obtain the com-
posite pattern of anomalies associated with this cluster.
Furthermore, we define regime events as the number of
consecutive points (days) along the model trajectory
that fall within a given cluster, and compute various
quantities related to conditional probabilities of regime
occurrence, which characterize the statistics of the tran-
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sitions between regimes (Mo and Ghil 1988; Kimoto
and Ghil 1993b). The preferred transition paths so
identified may, in certain cases, be associated with low-
frequency oscillations present in the dataset (Ghil et al.
1991; Kondrashov et al. 2004).

These oscillations will be identified here by M-SSA
analysis (Keppenne and Ghil 1993), which is especially
useful in the study of amplitude- and phase-modulated
signals. M-SSA finds eigenvalues and eigenvectors of
the grand covariance matrix built from lagged copies of
a vector time series. An oscillatory mode is character-
ized by a pair of nearly equal eigenvalues and periodic
eigenvectors that correspond to the same frequency.
Following Ghil et al. (2002), we apply a Monte Carlo
test to ascertain statistical significance of the oscilla-
tions detected by M-SSA. In addition, we subject sus-
pected oscillatory pairs to the lag-correlation test of
Plaut and Vautard (1994). All oscillatory signals iden-
tified in section 3 pass both of these tests.

The data-adaptively bandpass-filtered time series as-
sociated with the oscillatory modes are called recon-
structed components (RCs), which we use to define the
oscillation’s phase categories (Keppenne and Ghil
1993; Plaut and Vautard 1994). Similarly to the regime
compositing described above, we also performed a
composite analysis keyed to a given phase of a low-fre-
quency oscillation to describe the anomalies in physical
space associated with that phase (Ghil and Mo 1991,
Plaut and Vautard 1994).

The statistical significance of any composite quantity
can be estimated using a nonparametric Monte Carlo
method (Dole and Gordon 1983; Vautard et al. 1990;
Plaut and Vautard 1994). To do so, one gathers into
time segments the consecutive days belonging to a
given oscillation phase or a given regime, including a
“null regime,” defined as all data points that do not
belong to any of the regimes identified. These segments
are randomly shuffled 100 times, thus providing 100
independent realizations with the same length as the
original time series. Each quantity estimated for a given
composite, whether keyed to a given regime or to an
oscillation’s given phase category, can also be com-
puted using the 100 shuffled sets of category numbers.
The 95% confidence interval, for example, is then
bounded by the 2.5th and 97.5th percentiles of the ran-
dom values so computed, sorted in ascending order.

The procedure for constructing the reduced model
has been described in detail by Kravtsov et al. (2005b)
and is reviewed here briefly in the appendix. The model
has, in general, / variables at the first level and N levels;
see Eq. (A1l). We chose the number 7 of state vector
components (EOFs) to achieve maximal correspon-
dence between the behavior of the reduced model and
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full QG3 model in terms of their PDF structure and the
periods, as well as spatial patterns, of low-frequency
oscillations in each model. The reduced model with I =
15 variables and quadratic nonlinearities at the first
level produced optimal results, while the number of
levels is N = 3, and it is given by the requirement that
the additive noise be truly white at the last level; see
Kravtsov et al. (2005b). The total number of variables
in the inverse model is thus / X N = 15 X 3 = 45, two
orders of magnitude less than that in the full QG3
model.

3. Weather regimes and intraseasonal oscillations

We performed long simulations (=54 000 days) of
the reduced model (A1) with 7 = 15 and N = 3, using
a time step of & = 1 day. In this section, we compare
the statistical properties of the datasets produced by the
reduced model and the full QG3 model.

a. Weather regimes

The PDF of the datasets produced by the QG3 and
the reduced model are shown Fig. 1 in the subspace of
the QG3 model’s three leading EOFs. The clusters
were found using mixtures of k = 4 Gaussian compo-
nents in a phase subspace of three leading EOFs, which
capture 25% of the total variance. The optimal number
of clusters is k = 4 for both the QG3 simulation and for
the reduced-model dataset, as determined by the cross-
validation procedure of Smyth et al. (1999); see also
Kondrashov et al. (2004). The locations, shapes and
sizes of clusters, and hence the general shape of the
QG3 model’s PDF, are well reproduced by our reduced
model’s PDF in Fig. 1. On the other hand, linear re-
duced models driven by Gaussian noise cannot capture
the clearly non-Gaussian shape of the QG3 model’s
PDF and the associated weather regimes; see further
discussion of this point in Kravtsov et al. (2005b) and
Kondrashov et al. (2005).

The composites over the data points that belong to
each of the ellipses in Fig. 1 represent, in physical space,
the patterns of four planetary flow regimes (Legras and
Ghil 1985; Ghil and Childress 1987, chapter 6; Mo and
Ghil 1988; Cheng and Wallace 1993; Kimoto and Ghil
1993a,b; Hannachi 1997; Smyth et al. 1999; Hannachi
and O’Neill 2001; Molteni 2002). These regimes are
associated with the opposite phases of the NH annular
mode, the so-called Arctic Oscillation (AO; Deser
2000; Thompson and Wallace 2000; Thompson et al.
2000; Wallace 2000), and the sectorial North Atlantic
Oscillation (NAO; Hurrel 1995) pattern.

In Fig. 1a, cluster AO™ occupies a distinctive region
on the PDF ridge that stretches along EOF-1. It corre-
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FIG. 1. Mixture model PDF and clusters of the four weather regimes—AO™, AO",NAO™, and NAO ™ (see text)
for the (left) QG3 model and (right) reduced. (a), (b), (c) Projections onto pairs of EOFs, as indicated on the axes.
The semiaxes of the ellipses equal the standard deviation (i.e., the eigenvalue) in each principal direction.

sponds to the low-index phase of the AO (Deser 2000;
Wallace 2000). The clusters AO™, NAO ™, and NAO*
are located around the global PDF maximum, with the
centroid of AO™ to the left and below, NAO™ above,
and NAO™ slightly to the right of this maximum, re-
spectively. These four regimes are not identical to but
in fairly good agreement with the observational results
of Cheng and Wallace (1993) and Smyth et al. (1999);
see also Ghil and Robertson (2002) and Kondrashov et
al. (2004).

Since we are ultimately interested in explaining LFV
in NH observations, one might question the indepen-

dence of the two NAO-related and the two AO-related
regimes in the QG3 model. The relations between
hemispheric and sectorial regimes are a topic of con-
tinuing investigation and debate. Watanabe (2004), for
instance, showed, using both NH observations and a
linear barotropic model, how the sectorial NAO could
have, at certain times of year and in combination with
other sectorial phenomena, a downstream effect ex-
tending all the way to East Asia. Kravtsov et al. (2000),
on the other hand, distinguish in NH observations be-
tween a more truly hemispheric character of AO™ ver-
sus more complex and sectorial manifestations of AO™.
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FiG. 2. Mixture-model centroids, showing streamfunction anomaly maps at 500 hPa, for the QG3 model: (a)
NAO™, (b) NAO ™, (c) AO™, and (d) AO ™. Positive contours are thick and land masses are shaded; 20 contour
levels between maximum and minimum values are used, with the following intervals (in 10° m?s™"): (a) 1.1, (b) 0.8,
(c) 0.8, and (d) 1.1. Reproduced from Kondrashov et al. (2004), with the permission of the American Meteoro-
logical Society.

As we shall see in section 4, these observational results
are reflected in the reduced model’s AO ™ regime being
associated with a stable fixed point of our model’s de-
terministic part.

The streamfunction anomalies associated with each
regime centroid of the QG3 model are plotted in Fig. 2.
The spatial correlations between these anomaly pat-
terns and those obtained from the reduced model (not
shown) all exceed 0.9. They are thus much higher than
the correlations obtained by D’Andrea and Vautard
(2001) and D’Andrea (2002) in their 10-variable re-
duced model.

b. Intraseasonal oscillations

We compare the results of M-SSA analysis for the
QG3-model and the reduced-model simulations in Fig.
3. Both datasets have the same length of 54 000 days.
M-SSA was applied to the time series of the three lead-
ing PCs of the QG3 data. The QG3-model spectrum
(dashed line) and the reduced-model spectrum (solid
line) show excellent agreement in terms of overall
shape, as well as in the location of the leading signifi-
cant oscillatory pair, marked by an arrow. This oscilla-
tory mode has a period of about 37 days in both models
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F1G. 3. M-SSA of QG3 model (dashed line with squares) and
reduced-model (solid line with circles) simulations. M-SSA is per-
formed in a subspace spanned by the three leading EOFs of the
QG3 model. Symbols show M-SSA eigenvalues, plotted against
the dominant frequency associated with the corresponding space—
time PCs. The arrow indicates a significant oscillatory pair with a
period of about 37 days; the 20-day pair lies outside the frequency
range shown.

and will be analyzed in detail in the remainder of this
paper. The second, less energetic, oscillatory mode has
a period of about 20 days in the QG3 model (see Kon-
drashov et al. 2004), and lies outside of the frequency
range of Fig. 3. This secondary mode is also present in
the reduced model, but is less robust (see section 4b
below). The other spectral peaks in Fig. 3 correspond to
single PCs and not to oscillatory pairs in M-SSA.

The composite maps keyed to the phases of this os-
cillation (see section 2) are shown in Fig. 4 for the
QG3-model simulation. The reduced model produces
results that are virtually identical to those in Fig. 4 (not
shown). Figures 4a—d illustrate four successive, equally
populated composites that, taken together, cover one-
half cycle of the oscillation.

The composites of Figs. 4a,d,b have a strong resem-
blance to the NAO™, NAO~, and AO™ flow-regime
centroids of Figs. 2a—c, respectively. After passing
through the NAO™ (Fig. 4a) and AO™ (Fig. 4b) phases,
the next phase of our reduced model’s oscillation re-
sembles the Pacific-North American (PNA) pattern
(Fig. 4c), before reaching the NAO™ phase (Fig. 4d);
the PNA is a well-known pattern that, along with the
AQO and NAO, characterizes dominant modes of the
NH LFV (Wallace and Gutzler 1981; Ghil and Robert-
son 2002). Overall, this oscillation shares several fea-
tures of the oscillatory topographic instability described
by Ghil and associates in a hierarchy of models and in
NH observations (Legras and Ghil 1985; Jin and Ghil
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1990; Ghil and Mo 1991; Ghil and Robertson 2000; Lott
et al. 2001, 2004a, b); see Kondrashov et al. (2004) for
a more detailed discussion.

c. Connection between regimes and oscillations

The similarity between the regime composites and
certain phases of the low-frequency oscillations de-
scribed in the previous subsection points to possible
relationships between the episodic and oscillatory de-
scriptions of LFV (Ghil et al. 1991; Kimoto and Ghil
1993b; Plaut and Vautard 1994; Ghil and Robertson
2002; Koo et al. 2002; Kravtsov et al. 2006). Kon-
drashov et al. (2004) computed conditional probabili-
ties of regime transitions for the QG3 model and iden-
tified the preferred cycle NAO® — AO" — NAO™,
which is consistent with the trajectory of the intrasea-
sonal oscillation. We have computed the transition
probability matrix for our reduced model (not shown)
and have found it to be almost identical to that of the
QG3 model (see Kondrashov et al. 2004, their Table 6).

The relationship between the regimes and oscilla-
tions can be quantified by computing the conditional
probability of a given regime occurrence, assuming the
knowledge of the intraseasonal oscillation’s phase cat-
egory (see section 2), as shown in Fig. 5a for the QG3
model (left panel) and the reduced model (right panel).
In both models, the NAO™, NAO™~, and AO™ regimes
are associated with the same distinct phases of the in-
traseasonal oscillation, while the occurrence probability
of the AO™ regime does not strongly depend on the
oscillation’s phase category. This is consistent with the
oscillation’s spatial patterns in Fig. 4, of which only
three resemble one of the four flow regimes. Small dif-
ferences in phase categorization between Fig. 4 and Fig.
5 are due to the fact that phases of the 37-day oscilla-
tion strongly resemble, but are not identical to the
weather regimes; compare Figs. 2 and 4.

To examine further the relationship between regimes
and oscillations, we computed the composite phase ve-
locity in the plane spanned by the pair of RCs that
captures most of the variance associated with the in-
traseasonal oscillation, and the corresponding ten-
dency. This pair is given, in both models, by RCs 8-9.
Since the RCs in M-SSA are themselves vector-valued
time series, we used the second channel, denoted by
RC#*-2, of this pair, along with its tendency. Both RC*-2
and the tendency time series were normalized by their
respective standard deviations; with this normalization,
a purely sinusoidal oscillation has a constant phase ve-
locity (see Kravtsov et al. 2006).

The results are shown in Fig. 5b for the QG3-model
(left panel) and the reduced model (right panel): for
both models, the trajectory slows down considerably in
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FIG. 4. Phase composites of the 500-hPa streamfunction anomalies associated with the 37-day oscillation in the
QG3 model: (a)-(d) One-half of the oscillation cycle, with the same plotting conventions and contour intervals as
in Fig. 2. Reproduced from Kondrashov et al. (2004), with the permission of the American Meteorological Society.

the AO™ and NAO ™~ regimes, while it accelerates in the
NAO™ regime. These results are consistent with a
larger number of days and regime events for the high-
index AO™ and blocked NAO™ regimes, when com-
pared to these quantities for the zonal NAO™ regime
(Kondrashov et al. 2004).

4. Analysis of the reduced model

To identify the roots of multiple flow regimes and
intraseasonal oscillations, we study in sections 4a and
4b the properties of the full dynamical operator of Eq.
(A1) obtained by dropping the stochastic forcing term
dr® at the third and last level of the reduced model. In

this study, we also consider the even simpler, quadratic
operator obtained by retaining only the deterministic
component of the model’s first level. Section 4c then
traces the onset of the complete behavior described in
section 3, as the stochastic forcing amplitude changes
from zero to the value obtained by the inverse model-
ing procedure described in section 2 and the appendix.

a. Steady and quasi-stationary states

We identify quasi-stationary states of the reduced
model’s full dynamical operator by computing multiple
local minima of the quadratic functional defined as the
sum, over all 45 state variables, of their squared ten-
dencies (Legras and Ghil 1985; Mukougawa 1988; Vau-
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F1G. 5. Regimes vs oscillations for the (left) QG3-model and the (right) reduced-model simulation: (a) prob-
ability of a given regime occurrence during one of the eight phase categories of the 37-day oscillation for NAO™
(circles), AO™ (diamonds), NAO~ (squares), and AO™ (triangles); (b) composite phase velocity of the model
trajectory keyed to the phase categories of the 37-day oscillation (see text). Dashed lines in all panels correspond
to 95% confidence levels based on the nonparameteric Monte Carlo test of Plaut and Vautard (1994).

tard and Legras 1988). To do so, we apply a “subspace
trust region” technique from Matlab’s Optimization
Toolbox. This method is based on the interior-reflec-
tive Newton procedure (Coleman and Li 1994, 1996),
which involves approximate solutions of the minimiza-
tion problem for this functional; these solutions, in turn,
rely on using a preconditioned conjugate-gradient
method. The degree of quasi-stationarity of the mini-
mal-tendency states so obtained is controlled by a pre-
set tolerance [3: for a given 3 and a given initial guess of
the solution, the procedure iteratively corrects the so-
lution until the value of the functional drops below .

The values of 8 we use below should be compared with
the typical variance of the reduced model’s state vector,
which is approximately equal to 10~2 Once § is chosen,
we repeat the minimization procedure many times for
randomly chosen initial states.

For B = 10~ %, the procedure converges to the single
solution located in the vicinity of the AO™ regime (see
Fig. 1), irrespective of the initial guess used. This is a
true steady state, which is linearly stable (see section 4b
below) and can be obtained by direct integration of the
reduced-model equations with no stochastic forcing.
The AO™ regime in the reduced-model and in the full
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FIG. 6. Quasi-stationary states of the reduced model (open circles) plotted in the phase
space spanned by the QG3 model’s leading EOFs. The degree of quasi-stationarity is preset
by selecting a threshold B for the norm of the tendency vector in Eq. (A1) (see text): (a) B =
1079, (b) B = 107>. Also shown in each panel are the cluster centroids corresponding to the
four weather regimes of the QG3 model in Fig. 1 (filled circles), as well as the trajectory of its
37-day oscillatory mode (solid lines and arrows, whose length is scaled according to the

magnitude of phase velocity).

QG3 model simulations is thus associated with the pres-
ence of this stable fixed point in the reduced model’s
dynamical operator.

As B increases, we find multiple local minima that
correspond to quasi-stationary states of the reduced
model. The locations of these minima in the phase
space of the latter’s three leading EOFs are shown in
Fig. 6, for B = 10~ ° in Fig. 6a and g = 1077 in Fig. 6b.
If B is sufficiently small, 8 < 1077, the quasi-stationary
states are still located mostly in the vicinity of the AO™
regime (not shown). With increasing @, these states
start to progressively spread out toward the climato-
logical mean of the full QG3 model and form a distinct
“tongue” (Figs. 6a,b) aligned along the EOF-1 axis.

This small-tendency region in the reduced model’s
phase space is thus responsible for the PDF ridge in
Figs. 1a,b.

b. Linear stability analysis

We perform here a linear stability analysis of the
reduced model’s fixed points. The eigenvectors associ-
ated with pairs of complex eigenvalues represent
damped oscillations, whose decay time and period are
related to the inverse of the corresponding eigenvalue’s
real and imaginary parts, respectively.

The dynamical operator we considered so far arises
by dropping the white-noise forcing dr® at the third
level; as a result, dr'™ and dr® also become determin-
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istic. It is quite useful to investigate the fixed points of
the reduced model’s deterministic operator at the first
level as well. Instead of a single stable steady state for
the full dynamical operator with all 3 levels discussed in
section 4a, two steady states are found: one of them is
located near the AO™ regime and it is linearly unstable,
with a growth rate of ~25 days (see below), while the
other is located near the climatology and it is stable.
The locations of all fixed points are shown in Fig. 7a,
while the eigenspectrum for each of them is shown in
Fig. 7b.

For the unique steady state of the full, three-level
operator (diamonds in Figs. 7a,b), all of the eigenmodes
are decaying. The two least-damped modes are oscilla-
tory; they are characterized by a decay time of approxi-
mately 6 days, and have periods of 20 and 35 days,
respectively. These two periods are close to the ones
obtained by M-SSA analysis of the full QG3 and re-
duced-model solutions in section 3b (see also Kon-
drashov et al. 2004). It is tempting, therefore, to inter-
pret the oscillations identified in the two models’ simu-
lations as these damped modes. In the reduced model
they are excited by the stochastic forcing, while in the
full QG3 model their excitation is due to the smaller-
scale modes that have been filtered out of the deter-
ministic dynamics by our mode-reduction approach.

The trajectory of the 37-day intraseasonal oscillation,
which is shown in Figs. 6a,b, evolves around the time-
mean state of the QG3 model, rather than around the
model’s steady state. This result is consistent with the
fact that the AO™ regime does not appear to be asso-
ciated with our 37-day oscillation (see section 3c here
and section 5 in Kondrashov et al. 2004).

We computed therefore the linear eigenmodes of the
reduced model linearized about the climatological
mean state and found that the least-damped eigenmode
in this case has a decay time of 6 days and a period of
37 days (filled circles in Figs. 7a,b), similar to what we
obtained when linearizing about the unique steady state
of the reduced model’s full dynamical operator. The
20-day mode, however, is strongly damped when lin-
earizing about the reduced model’s climatology, with a
decay time of 3 days or less (not shown), which might
explain the dominance of the 37-day cycle in the QG3
model and in NH observations.

A similar separation in periods is observed in the
oscillatory modes associated with the fixed points of the
first-level dynamical operator. The least-damped mode
for the unstable steady state near AO~ (downward-
pointing triangles in Figs. 7a,b) has a decay time of ~15
days and a period of 25 days, while the corresponding
mode for the stable steady state near the climatology
(filled squares in Figs. 7a,b) has a period of 35 days and
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F1G. 7. Fixed points of the reduced model and their stability. (a)
Fixed points of the reduced model’s deterministic operator:
unique, stable steady state for the operator with all three levels
(diamond), and linearly unstable (downward-pointing triangle)
and stable (filled square) steady states for operator with the first
level only; the filled circle denotes the climatological state. (b)
Eigenvalues of the reduced model’s deterministic operator linear-
ized about the fixed points in (a) and climatology. The two least-
damped oscillatory modes for the unique steady state of the op-
erator with three levels have periods of 20 and 35 days, and a
decay time of ~6 days; the corresponding modes of the first-level
deterministic operator have a period of 35 and 25 days, and decay
times of 16 and 15 days for the stable and unstable steady state,
respectively. The symbols correspond to the fixed points and cli-
matology in (a).

a decay time of 16 days; note that the instability of the
former steady state is of exponential, rather than oscil-
latory type.

The shorter decay times of the oscillatory eigen-
modes and the transformation of the steady state near
AO™ from unstable to stable, when going from the
first-level to the three-level deterministic dynamics, in-
dicate that the two additional, linear levels involved in
modeling the red-noise forcing levels play a damping
role. This role makes both mathematical and physical
sense. Mathematically, red noise is associated with lin-
ear damping of white noise, which is thus correctly cap-
tured by the two additional levels. Physically, the effect
of the smaller scales on the large ones can involve
pumping energy into the latter, but also damping insta-
bilities associated with their self interaction.

Figure 8 shows the real (Fig. 8a) and imaginary (Fig.
8b) parts of the 37-day mode obtained by linearizing
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F1G. 8. Real and imaginary parts of a least-damped eigenmode of the reduced model linearized about (a), (b)
climatology (i.e., the origin of the model anomalies’ phase space), and (c), (d) its single stable steady state (see also
Fig. 7). Positive contours are thick. The period of the eigenmodes is 37 days in (a), (b) and 35 days in (c), (d).

the full dynamical operator of the reduced-model equa-
tions about climatology, while Figs. 8c,d show the pat-
terns for the 35-day mode obtained by linearization of
the same operator about its unique steady state. The
spatial patterns of these two eigenmodes are remark-
ably similar.

The similarity between the two patterns can be inter-
preted as follows. Both the AO™ regime and the re-
duced model’s steady state are primarily associated
with the weakening and southward shift of the jet
stream position, with respect to climatology. The
changes to the jet stream that are related to the AO™
anomaly have, therefore, a large degree of zonal sym-
metry (see Fig. 2d) so that their self-interaction tends to

vanish. This feature is consistent with the presence of a
tongue of quasi-stationary states along the EOF-1 axis
in Fig. 6. The approximate invariance of the least-
damped eigenmodes of the reduced-model equations,
when linearized about either the climatological jet or its
uniformly shifted counterpart means that the least-
damped eigenmodes are not sensitive to AO-type
changes of the basic state. In other words, the eigen-
modes turn out to be patterns whose interaction with
AO-type changes of the midlatitude jet vanishes.

We visualize in Figs. 9a—d the linear mode’s evolu-
tion during one-half of its 37-day oscillation cycle. This
figure shows one-to-one correspondence between the
linear eigenmode of the reduced model and the simu-
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F1G. 9. Evolution of the oscillatory eigenmode of Figs. 8a,b. (a)—(d) Patterns that are equidistant in time, during
one-half of the oscillation cycle. Positive contours are thick.

lated intraseasonal pattern of the full QG3 model in
Fig. 4. We conclude, therefore, that the QG3 model’s
37-day intraseasonal oscillation is associated with the
damped linear eigenmode of the reduced model, ex-
cited by the modes of the full model that are captured
by the stochastic forcing in the reduced one.

The power spectrum of the PCs is getting progres-
sively whiter as the rank increases, while the spatial
scale of the EOFs is getting smaller. In both the re-
duced and QG3 model simulations, the intraseasonal
oscillation has a large amplitude in the four leading
PCs, as indicated by the size of the streamfunction
anomalies in Fig. 4; the variance associated with this
oscillation is very small, though, for the higher-ranked
EOFs 5-15 (not shown). The cluster-centroid patterns

in both the QG3 model and the reduced model (section
3) also have essentially null projections onto EOFs 5-15
(not shown here, but see Kondrashov et al. 2004). The
reduced model with only a few state vector variables at
the first level, though—say / = 4 variables instead of
the 15 used in the reduced model of sections 3 and
4—reproduces neither the period and spatial pattern of
the QG3 model’s intraseasonal signal nor its PDF struc-
ture (not shown).

Based on this evidence, we conclude that interactions
between the leading modes 1-4 of the system’s LFV, on
the one hand, and the intermediate modes represented
by EOFs 5-15, on the other, are an essential contribu-
tor to the system’s low-dimensional, leading-order dy-
namics. Such interactions between low-frequency flow
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F16. 10. Mixture-model clusters for the reduced model simulations, in which the stochastic forcing is multiplied
by a factor &: (a) ¢ = 0.2, (b) ¢ = 0.4, (c) € = 0.6, and (d) € = 1 (control case). Note that the number of clusters

increases with e.

and intermediate modes may also be instrumental in
determining the region of phase space in which the
dominant intraseasonal oscillation actually takes place
(see Fig. 6), thus removing the degeneracy of the lead-
ing eigenmodes of the reduced model’s linearization
with respect to the shifts of the basic state along the
EOF-1 axis (see Fig. 8 and its discussion above). These
interactions could also play a role in slowing down the
intraseasonal oscillation’s trajectory in the vicinity of
the anomalously persistent flow regimes detected in
section 3c. Besides the intermediate modes 5-15, the
“noise” associated with EOFs 16 and higher in the QG3
model can also play a role in the system’s leading-order
dynamics, as we shall see forthwith.

c. Emergence of weather regimes

In this section, we track the emergence of the QG3
model’s weather regimes. To do so, we introduce a fac-
tor ¢ (0 = ¢ = 1) that multiplies the stochastic forcing
term dr® at the third level of the reduced model (see

the appendix), and perform simulations of the reduced
model so modified using different values of . For ¢ =
0, the solution converges to the steady state located
within the AO™ regime (see diamond in Fig. 7a and
section 4a). For small values of €, the stochastic forcing
merely causes the model trajectories to wander in the
vicinity of this steady state. As the stochastic forcing
amplitude € increases, the region occupied by the mod-
el’s trajectory grows in size. As progressively larger
portions of the phase space are filled up, the associated
PDF becomes more inhomogeneous.

In Figs. 10a—d, we show a mixture-model approxima-
tion of this PDF, along with the clusters supported by
the simulated data for ¢ = 0.2, 0.4, 0.6, and 1, respec-
tively. The optimum number of clusters k* for each
value of ¢ is obtained using the cross-validated log-
likelihood criterion (Smyth et al. 1999; see also section
2). For ¢ < 0.15, k* = 1 (not shown), while k* increases
with &: k* = 2 for ¢ = 0.2 (Fig. 10a), k* = 3 for ¢ = 0.4
(Fig. 10b), and k* = 4 for ¢ = 0.6 (Figs. 10c,d). This
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increased non-Gaussianity of the model’s PDF is in-
dicative of the weather regimes’ nonlinear origin, since
a linear system forced by Gaussian stochastic forcing
will always support only one mixture-model cluster,
centered around the mean.

The AO™ regime, characterized by a large positive
projection onto EOF-1, is present in all of the reduced-
model PDFs of Fig. 10 and is clearly related to the
deterministic model version’s steady state (see section
4a). As ¢ increases, the model PDF becomes elongated
in the negative EOF-1 direction (Figs. 10a,b), thereby
spending most of the time in the vicinity of the quasi-
stationary tongue of Fig. 6. As ¢ increases even further
(Figs. 10c,d), additional spreading of the PDF along the
EOF-1 axis is accompanied by the PDF’s increased pro-
jection onto the (EOF-2-EOF-3) plane (see Fig. 1c for
e = 1; not shown for smaller &).

This increased three-dimensionality of the PDF is as-
sociated with the excitation of the oscillatory modes of
sections 3b and 4b. The slow phases of the 37-day os-
cillation, due to interactions between the model’s low-
est-frequency EOFs (1-4) and faster (EOFs 5-15)
modes (see sections 3¢ and 4b) become associated with
the emergence of additional anomalously persistent re-
gimes. The latter occupy the vicinity of the model’s
climatological state, farther away from the three-level
reduced model’s unique steady state and AO™~ regime.

It is clear, therewith, that our reduced model does
not support the oscillatory topographic instability of
Ghil and associates (Legras and Ghil 1985; Jin and Ghil
1990; Strong et al. 1993, 1995; Marcus et al. 1994, 1996)
as a limit cycle (i.e., as a self-sustained, stable periodic
solution) of its empirically inferred, deterministic dy-
namics. Instead, the 37-day oscillation arises here by
the reduced model’s stochastic forcing, which repre-
sents the QG3 model’s eddy variability, pumping of a
least-damped eigenmode with the appropriate period-
icity. This type of relation between episodic and oscil-
latory variability in NH LFV, where synoptic variability
plays a significant role, has to be added, therefore, to
the catalog of such relations already established by Ghil
et al. (1991) and by Ghil and Robertson (2002).

5. Concluding remarks

a. Summary

We have constructed a reduced, nonlinear, stochas-
tically forced model for the behavior of the three-level,
quasigeostrophic (QG3) model with topography of
Marshall and Molteni (1993), using the empirical meth-
odology of Kravtsov et al. (2005b). The QG3 model has
O(10%) degrees of freedom. The reduced model, de-
scribed in the appendix, operates in the phase space of
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the QG3 model’s leading 15 empirical orthogonal func-
tions (EOFs); it involves quadratic nonlinearity at the
first model level, while the two additional levels, which
describe the effect of unresolved variables on the re-
duced model’s evolution, are both linear (see section 2).

Our reduced model thus has 45 variables and is
driven at the third level by a spatially coherent noise
that is white in time. Once the size of the state vector
(number of EOFs) is chosen, the number of levels in
the reduced model is determined automatically by en-
suring that the last-level residual forcing’s lag-1 covari-
ance matrix vanishes, while its lag-0 covariance matrix
converges to a constant matrix. The covariance matri-
ces of the noise, as well as the model’s dynamical op-
erator were determined from a very long simulation of
the QG3 model, by least squares regression (Wetherill
1986; Press et al. 1994; Kravtsov et al. 2005b). Our
model generalizes linear inverse models (LIMs), which
have only one level and have been extensively applied
to study climate variability (Penland 1989, 1996; Pen-
land and Ghil 1993; Penland and Sardeshmukh 1995;
Penland and Matrosova 1998; Winkler et al. 2001).

The dimension / = 15 of EOF subspace for construct-
ing the reduced model was chosen to maximize corre-
spondence between its behavior and that of the full
QG3 model. We documented remarkable similarity be-
tween the full and reduced models, in terms of their
anomalously persistent flow regimes, as described by
the Gaussian-mixture PDF (section 3a), and in terms of
their low-frequency oscillatory modes, as captured by
multichannel singular-spectrum analysis (M-SSA; see
section 3b). The QG3 model’s low-frequency variability
(LFV) in turn, captures several key features of ob-
served NH LFV.

In particular, both models are characterized by four
anomalously persistent flow regimes, NAO™, NAO™,
AO™, and AO™ (see Figs. 1, 2 and section 3a), and a
dominant oscillatory mode with a period of about 37
days (see Figs. 3, 4 and section 3b). The AO" and
NAO™ regimes are related, in both models, to anoma-
lous slow-down of the intraseasonal oscillation trajec-
tory, while AO™ is a stand-alone regime (see Fig. 5 and
section 3c), also associated with the presence of the
PDF ridge in Figs. 1a,b.

These features of both models’ LFV were interpreted
via the analysis of the reduced-model dynamics in sec-
tion 4: the AO™ regime arises from the unique steady
state of the reduced model’s 3-level deterministic op-
erator, while the PDF ridge of Figs. 1a,b coincides with
the location of a plateau of quasi-stationary states of
the reduced model (see Fig. 6 and section 4a). As
shown in section 4b, the dominant intraseasonal oscil-
lation in both the QG3 and reduced model has a period
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of about 35-37 days and is associated with the least-
damped eigenmode of the latter (Fig. 7), when linear-
ized about its climatological state (cf. Figs. 9 and 4).

This eigenmode is also very similar to the least-
damped eigenmode obtained when linearizing the re-
duced model’s deterministic operator about the AO™
steady state (cf. Figs. 8a,b and Figs. 8c,d). The similarity
between the two eigenmodes reflects their approximate
invariance with respect to shifts of the basic state along
the EOF-1 axis; the large degree of zonal symmetry of
EOF-1 helps explain such an invariance, which is also
consistent with the presence of the quasi-stationary
tongue along this axis (Fig. 6).

The degeneracy associated with these shifts is re-
moved due to interactions between the largest-scale
modes of the system, whose variance is concentrated in
the subspace of the four leading EOFs, and the inter-
mediate scales, captured by EOFs 5-15; the reduced
model constructed in the phase subspace of the four
leading EOFs alone reproduces neither the non-
Gaussian features of the QG3 model’s PDF, nor its
low-frequency oscillatory modes. We also suspect,
therefore, that such interactions are responsible for the
slow-down of the intraseasonal oscillation’s trajectory
in the full QG3 model, as well as in our optimal reduced
model; this slow-down is associated with the emergence
of the AO* and NAO™ regimes.

Finally, in section 4c, we studied the emergence of
multiple flow regimes and intraseasonal oscillations as
the stochastic forcing associated with unresolved small-
scale processes increases from zero to its observed
value (Fig. 10): the model trajectory is initially confined
to a small region near the three-level reduced model’s
unique steady state and gradually fills up the quasi-
stationary ridge along the EOF-1 axis of the reduced
model. When the amplitude of the stochastic forcing
becomes large enough, the intraseasonal oscillatory
mode is excited, resulting in the model’s PDF expand-
ing in the EOF-2 and EOF-3 directions, while addi-
tional quasi-stationary clusters appear.

b. Discussion

The methodology of mode reduction used in this pa-
per is based solely on the statistical information con-
tained in the model-generated dataset. D’Andrea and
Vautard (2001) and D’Andrea (2002) took a different
approach and constructed a low-order representation
of the QG3 model by projecting its equations onto a
few leading EOFs of the model, and introducing an
empirical deterministic closure to account for the effect
of unresolved small-scale processes on the reduced
model’s low-frequency evolution. They compared the
performance of the resulting deterministic low-order
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model with that of the full QG3 model, in terms of
approximate correspondence between the full model’s
weather regimes and the quasi-stationary states of the
low-order model. Their flow-dependent parameteriza-
tion of the closure term turned out to be essential for a
good performance of the reduced model. In particular,
their Arctic High regime, analogous to our AO™ re-
gime, had a high spatial correlation with the corre-
sponding unstable steady state of their deterministic
reduced model.

Our model accounts for small-scale processes by us-
ing additional model levels that describe their effect on
the large-scale variables; the energy for the system’s
variability is supplied by the stochastic forcing, which
represents the joint effect of small-scale instabilities
that occur in the full model. The AO™ regime of the
QG3 and reduced models is associated, in our ap-
proach, with the unique steady state of the reduced
model’s three-level deterministic operator. One can
think of this zonally symmetric regime as the zonal flow
of classical dynamic meteorology (Gill 1982; Holton
2004).

The correlation between the multiple-flow regimes’
anomaly patterns in our reduced model and those of
the full QG3 model all exceed 0.9 and are thus higher
than the correlations obtained by D’Andrea and Vau-
tard (2001) and D’Andrea (2002). It is interesting that
most of the LFV in the QG3 model and in NH obser-
vations, including the AO™, NAO~ and NAO™ re-
gimes, as well as the intraseasonal oscillations, occur
fairly far away in phase space from the classical zonal
flow of the AO™ regime.

Majda et al. (1999, 2001, 2002, 2003) have developed
a strategy for systematic mode reduction in determin-
istic models that govern geophysical flows. This strat-
egy has been recently applied to the analysis of a baro-
tropic atmospheric model (Franzke et al. 2005) and to
the QG3 model (C. Franzke and A. Majda 2005, per-
sonal communication). Our method, like that of Majda
and colleagues, results in a nonlinear deterministic
model, driven by stochastic forcing. Unlike their
method, ours is completely empirical and has also been
applied directly to NH geopotential height anomalies
(Kravtsov et al. 2005b), as well as to sea surface tem-
perature anomalies (Kondrashov et al. 2005). The simi-
larities and differences between these two methods,
when applying both to a fairly realistic atmospheric
model, like QG3, are a matter of considerable interest
and further investigation.

The number of variables in our reduced model is
much less than the number of degrees of freedom in the
full QG3 model, but it is still larger than the number of
modes that contain most of the latter models low-
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frequency variance (EOFs 1-4). The higher-ranked
EOFs 5-15 can thus be associated with intermediate-
scale modes, while the additive noise in our reduced
model’s highest level represents the smallest scales,
captured by EOFs 16 and higher in the full QG3 model.
Note that our higher-order PCs have spectra that be-
come increasingly whiter, rather than being increas-
ingly shifted to higher frequencies or faster decay times.

Direct comparison with the mode-reduction strategy
of Majda and coauthors is thus difficult at the present
stage: our strategy emphasizes separation in spatial
scales—large, intermediate, and small—while theirs
emphasizes separation in temporal scales (somewhat
like in F. D’Andrea and R. Vautard’s work), with slow
and fast scales only. This being said, there might be
some analogy between the effects on the large-scale
LFV of the quadratic terms that describe the interac-
tions between EOFs 1-4 and EOFs 5-15 in our reduced
model, on the one hand, and the effects of multiplica-
tive noise in the Franzke et al. (2005) model, on the
other.

Empirically based reduced models, like the one con-
structed in this paper, provide a useful statistical tool
for interpretation of complex behavior detected in
highly resolved climate models, as well as in observa-
tions. Such models not only help compact the dataset’s
information content but can also provide insights into
the dynamics of large-scale, low-frequency climate vari-
ability, via the analysis of the reduced model’s math-
ematical structure.

In this way, we have identified the leading modes of
the QG3 model’s LFV as the least-damped eigenmodes
of this system linearized about its climatological state
(see also Branstator 1992, 1995; Farrell and Ioannou
1993, 1995; Metz 1994; Da Costa and Vautard 1997,
Ttoh and Kimoto 1999; Kravtsov et al. 2003, 2005a). We
have also pointed out the possible effect of the inter-
mediate and smallest scales of motion on the QG3
model’s LFV and on connecting the oscillatory descrip-
tion of LFV with its “episodic” description via multiple
flow regimes (Ghil et al. 1991; Ghil and Robertson
2002). The effect of the smaller scales on the largest
ones may be related to a more or less active synoptic
eddy feedback (Robinson 1996, 2000; Lorenz and Hart-
mann 2001, 2003; Koo et al. 2002; Kravtsov et al.
2005a), although a detailed look at how the additional
levels of the reduced model affect the deterministic dy-
namics indicates a damping role of the red-noise-like
small scales in the QG3 model.

We have provided additional evidence for the AO™
regime, detected in the QG3-model simulation and as-
sociated with the steady state of our reduced model,
representing a dynamical entity that is distinct from the
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regional NAO phenomenon (see also Deser 2000;
Kravtsov et al. 2006). Our reduced-model analysis also
suggests that extended-range predictability of the NAO
may be possible, due to its connection with intrasea-
sonal oscillations (Lott et al. 2001, 2004a,b) and mul-
tiple flow regimes (Ghil and Robertson 2002).

Finally, an important difference between linear and
nonlinear reduced models concerns their ability to
simulate non-Gaussian PDFs and help predict transi-
tions between different weather regimes. Yang and
Reinhold (1991) have reviewed earlier studies of ob-
served NH LFV and shown that large-amplitude tran-
sitions between quasi-stationary, persistent states play a
key role in it. On the other hand, D’ Andrea et al. (1998)
have reviewed the performance of 15 general circula-
tion models and found them to generally underestimate
the number and duration of blocking events, while
Pelly and Hoskins (2003) found that forecasts of block-
ing inception in advanced numerical weather prediction
systems still have no skill starting from a lead time of six
days. Thus, if a reduced model can simulate a non-
Gaussian PDF whose distinct Gaussians capture mul-
tiple weather regimes present in NH LFV, then it might
also have some helpful skill at predicting the breaks and
onsets of these regimes.
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APPENDIX

Constructing the Reduced Model

The inverse stochastic counterpart of the QG3 model
is constructed in the phase space of I leading EOFs of
the 500-hPa streamfunction anomaly field. If x = {x;} is
such a state vector of dimension /, then the multilevel
quadratic inverse stochastic model has the general form
(Kravtsov et al. 2005b)
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dx; = x"Ax +b"x + ") + ri¥ at,
0 — hrg 1O 1
dr® = b [x, v dt + ri" dt,

drﬁ»l) = bﬁz)[x, ' eV dr + r§2> dt,

drE_N) _ bE-N)[X, rO M l_(N)] dt + dr5N+1)’ i=1.1

(A1)

the matrices A;, the rows b of the matrices B™, n =
0, N and the components c,(;o) of the vector ¢©, as well
as the components 7 of each level’s residual forcing
", n =0, N + 1, are determined by general least
squares (Wetherill 1986; Press et al. 1994).

Linear inverse models (LIMs; see section 2) are a
particular case of Eq. (A1) with only one level, N = 1,
and with zero A, and ¢*). Including quadratic nonlin-
earity at the first level of the multilevel model allows
one to account for processes characterized by non-
Gaussian statistics. The stochastic forcing r* at this
level, however, typically involves serial correlations and
might also depend on the modeled process x. We in-
clude, therefore, an additional model level to express
the time increments dr® as a linear function of an ex-
tended state vector (x, r'®)T; in numerical practice,
these increments are equivalent to the divided differ-
ences of the residual forcing r®.

Linear dependence is used at the second and higher
levels ones since the non-Gaussian statistics of the data
has already been captured by the first, nonlinear level.
More levels are added, until the estimate of the Nth
level’s residual r™> "V becomes white in time, and its
lag-0 correlation matrix converges to a constant matrix.
With the addition of each level, we are accounting for
additional time-lag information, thereby squeezing out
any time correlations from the residual forcing. Equa-
tion (A1) thus describes a wide class of processes in a
fashion that explicitly accounts for the modeled process
x feeding back on the noise statistics (see Kravtsov et al.
2005b).
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