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ABSTRACT

Predictive models are constructed to best describe an observed field’s statistics within a given class of
nonlinear dynamics driven by a spatially coherent noise that is white in time. For linear dynamics, such
inverse stochastic models are obtained by multiple linear regression (MLR). Nonlinear dynamics, when
more appropriate, is accommodated by applying multiple polynomial regression (MPR) instead; the result-
ing model uses polynomial predictors, but the dependence on the regression parameters is linear in both
MPR and MLR.

The basic concepts are illustrated using the Lorenz convection model, the classical double-well problem,
and a three-well problem in two space dimensions. Given a data sample that is long enough, MPR suc-
cessfully reconstructs the model coefficients in the former two cases, while the resulting inverse model
captures the three-regime structure of the system’s probability density function (PDF) in the latter case.

A novel multilevel generalization of the classic regression procedure is introduced next. In this general-
ization, the residual stochastic forcing at a given level is subsequently modeled as a function of variables at
this level and all the preceding ones. The number of levels is determined so that the lag-0 covariance of the
residual forcing converges to a constant matrix, while its lag-1 covariance vanishes.

This method has been applied to the output of a three-layer, quasigeostrophic model and to the analysis
of Northern Hemisphere wintertime geopotential height anomalies. In both cases, the inverse model simu-
lations reproduce well the multiregime structure of the PDF constructed in the subspace spanned by the
dataset’s leading empirical orthogonal functions, as well as the detailed spectrum of the dataset’s temporal
evolution. These encouraging results are interpreted in terms of the modeled low-frequency flow’s feedback
on the statistics of the subgrid-scale processes.

1. Introduction and motivation

Comprehensive general circulation models (GCMs)
currently used to understand and predict climate varia-
tions (Randall 2000), as well as their simpler conceptual
counterparts (Ghil and Robertson 2000), share a com-
mon difficulty of having to parameterize unresolved
processes in terms of dynamical variables of interest.

Some progress in achieving this goal has recently been
made in the realm of so-called empirical climate mod-
els, by relaxing the requirement of a strict closure and
assuming that errors may be treated as spatially coher-
ent noise, that is, white in time (Penland 1989; Winkler
et al. 2001). In this paper, we develop a data analysis
approach that builds upon this progress and leads to the
construction of a hierarchy of stochastically forced dy-
namical models that are based on observed climate sta-
tistics.

a. Statement of the problem

If X is the climate-state vector, X its time mean, and
x � X � X the vector of anomalies, then the evolution
of x is expressed as

ẋ � Lx � N�x�. �1�

Here the dot denotes time derivative, L is a linear op-
erator, and N represents nonlinear terms; both L and N

* Additional affiliation: Départment Terre–Atmosphère–
Océan and Laboratoire de Météorologie Dynamique/IPSL, Ecole
Normale Supérieure, Paris, France.

Corresponding author address: Dr. Sergey Kravtsov, Depart-
ment of Atmospheric and Oceanic Sciences, University of Cali-
fornia, Los Angeles, 405 Hilgard Ave., Los Angeles, CA 90095-
1565.
E-mail: sergey@atmos.ucla.edu

4404 J O U R N A L O F C L I M A T E VOLUME 18

© 2005 American Meteorological Society

JCLI3544



may be functions of X, but this dependence is sup-
pressed here. Even if the exact form of Eq. (1) were
known, it would contain a very large number of degrees
of freedom, so that its direct numerical integration
would not be feasible due to insufficient computer
power.

A common approach to solving Eq. (1) in practice is
based on assuming scale separation. In this case, the full
climate-variable vector x is represented as the sum of a
climate “signal” xS and a “noise” x�N:

x � xS � x�N, �2�

where the noise field is typically characterized by
smaller scales in both space and time. Upon substitut-
ing the decomposition (2) into Eq. (1) and omitting the
subscripts, the latter becomes

ẋ � Lx � N�x� � R�x, x��. �3�

To obtain a closed form of the reduced dynamics in Eq.
(3), one has to make assumptions about the term R(x,
x�). A closure of this Reynolds stress term is used in
many climate GCMs: one assumes that small-scale,
high-frequency transients—due to instabilities of the
large-scale, low-frequency flow—act on the latter as a
linear diffusion that merely flattens, on long time scales,
spatial gradients of the large-scale field; the corre-
sponding eddy diffusivities are estimated from available
data by trial and error. It is widely recognized, however,
that the underlying assumption in this “eddy diffusion”
closure does not generally hold.

If the full dynamical model in (1) is available and its
integration is feasible, one can derive closed forms of
the reduced model in (3) using a statistical–dynamical
approach, by combining statistical properties of the
modeled data and Eq. (1) that governs the flow dynam-
ics. For example, Eq. (1) can be linearized about the
numerically computed climatological state by setting N
� 0, while the term R(x, x�) in Eq. (3) may be treated
as flow independent, spatially correlated noise, that is,
white in time (Farrell and Ioannou 1993, 1995). One
may also add information about climate variability to
the knowledge about the time-mean climate.

To do so, one can define the large-scale flow as the
one represented by a few leading empirical orthogonal
functions (EOFs; Preisendorfer 1988). The nonlinear
reduced dynamics model in (3) is then obtained by re-
writing Eq. (1) in the truncated EOF basis (Rinne and
Karhila 1975; Schubert 1985; Sirovich and Rodriguez
1987; Mundt and Hart 1994; Selten 1995, 1997), while
treating the residual forcing as random. Alternatively,
one can or by develop a deterministic, flow-dependent
parameterization of unresolved processes R(x, x�),

based on the library of differences between the ten-
dency of the full and truncated models (D’Andrea and
Vautard 2001; D’Andrea 2002). Yet another approach
to this closure problem, which is mathematically rigor-
ous in the limit of significant scale separation, has been
developed by Majda et al. (1999, 2001, 2002, 2003).
Franzke et al. (2005) have recently applied this ap-
proach to a barotropic flow model on the sphere, with
a T21 resolution, while C. Franzke and A. Majda (2005,
personal communication) have applied it to the Mar-
shall and Molteni’s (1993) baroclinic model.

b. Inverse stochastic models

The closure problem above can be effectively ad-
dressed in a data-driven, rather than model-driven ap-
proach, by using inverse stochastic models; these mod-
els rely almost entirely on the dataset’s information
content, while making only minimal assumptions about
the underlying dynamics. The simplest type of inverse
stochastic model is the so-called linear inverse model
(LIM; Penland 1989, 1996). These models are obtained
by assuming that N(x) dt � Tx dt � dr(0) in Eq. (1),
where T is the matrix that describes linear feedbacks of
unresolved processes on x, and dr(0) is a white noise
process that can be spatially correlated:

dx � B�0�x dt � dr�0�, B�0� � L � T. �4�

The matrix B(0) and the covariance matrix of the noise
Q � 	r(0)r(0)T
 can be directly estimated from the ob-
served statistics of x by multiple linear regression
(MLR; Wetherill 1986). LIMs have shown some success
in predicting ENSO (Penland and Sardeshmukh 1995;
Johnson et al. 2000), tropical Atlantic SST variability
(Penland and Matrosova 1998), as well as extratropical
atmospheric variability (Winkler et al. 2001). These
models are typically constructed in the phase space of
the system’s leading EOFs. The state vector x, or pre-
dictor-variable vector, consists of amplitudes of the cor-
responding principal components (PCs), while the vec-
tor of response variables is that of their time derivatives
ẋ. One should bear in mind, however, that the choice of
predictor and response variables is not unique: to focus
on the phenomena and time scales of interest, one has
to choose the most appropriate subspaces of the climate
system’s full phase space.

c. This paper

In most geophysical situations, the assumptions of
linear, stable dynamics, and white noise forcing used to
construct LIMs are only valid to a certain degree of
approximation. In particular, the stochastic forcing r(0)
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in Eq. (4) typically involves serial correlations. In ad-
dition, when the nonlinearity is strong, the matrices B(0)

and Q obtained from the data can exhibit substantial
dependence on the time scales considered (Penland and
Ghil 1993).

In the present paper, we consider generalizations of
LIMs that use additional statistical information to ac-
count for nonlinearity, among other things, and apply
these generalized models to the analysis of climatic
time series. One major modification of LIMs is ob-
tained by assuming a polynomial, rather than linear
form of N(x) in Eq. (1), in particular, a quadratic de-
pendence.

The ith component Ni(x) of N can then be written as

Ni�x� dt � �xTAix � tix � ci
�0�� dt � dri

�0�. �5�

The matrices Ai are the blocks of a third-order tensor,
and the vectors b(0)

i � li � ti are the rows of the matrix
B(0) � L � T [cf. Eq. (4)]. These objects, as well as the
components of the intercept vector c(0), are estimated
here by multiple polynomial regression (MPR; McCul-
lagh and Nelder 1989), rather than by the MLR used to
construct LIMs. The two methods (MLR and MPR) are
algorithmically similar, though, inasmuch as their de-
pendence on the regression parameters is linear in
both.

The other major modification is to consider an itera-
tive process of model construction, in which the re-
sidual noise r(0) is tested for whiteness. If this test fails,
r(0) is modeled in turn by the same regression approach,
and so on, until r(L) satisfies the white noise test.

We introduce the MPR methodology in section 2 us-
ing data generated by simple nonlinear models of geo-
physical flows. The appendix describes in some detail
MPR algorithms and the ways to solve the collinearity
problems that often arise when the number of regres-
sion parameters to be determined is large. Section 3
deals with our multilevel generalization of the standard
regression procedure, which addresses the problem of
serial correlations in r(0).

We apply the resulting multilevel, nonlinear method
to a long simulation of the three-layer, quasigeo-
strophic (QG) atmospheric model of Marshall and Mol-
teni (1993) and to a set of Northern Hemisphere (NH)
geopotential height data (Smyth et al. 1999) in section
4. A summary of the results and a brief discussion of
practical applications of the method follow in section 5.
The use of the same methodology to quantify and pre-
dict seasonal-to-interannual climate variability based
on a set of global sea surface temperatures is described
in a companion paper (Kondrashov et al. 2005).

2. Didactic examples

a. The Lorenz model

1) DYNAMICAL MODEL AND EXPERIMENTAL

DESIGN

The Lorenz (1963a) model (see also Ghil and Chil-
dress 1987, their section 5.4) is derived via spectral trun-
cation of the full system of partial differential equations
that describes Rayleigh–Bénard convection. The result-
ing system of three ordinary differential equations for
the nondimensional variables x � (x1, x2, x3)T is

ẋ1 � � sx1 � sx2, �6a�

ẋ2 � �x1x3 � rx1 � x2, �6b�

ẋ3 � x1x2 � bx3, �6c�

where a dot denotes the derivative with respect to non-
dimensional time t, and (. . .)T denotes the transpose.
For the parameters, we choose the usual values s � 10,
r � 28, and b � 8/3, known to produce chaotic behavior,
and perform a long numerical intergration of the
model. The time series of model variables from a
sample subset of length T � 20 nondimensional units of
this integration are shown in Fig. 1. The shortest char-
acteristic time scale of the model’s chaotic variability
can be estimated by counting the number of oscillations
of x3 over the interval of integration; it is equal, ap-
proximately, to Tch � 0.75.

We sample the model-generated data every �t time
units, and vary the sampling interval �t, as well as the
length T of the time series. The coefficients of the
Lorenz model are then reconstructed for each dataset,
characterized by a pair of (T, �t), using multiple qua-
dratic regression (see below). The response variables
(y1, y2, y3) are the time derivatives (ẋ1, ẋ2, ẋ3) of the
predictor variables (x1, x2, x3). These time derivatives
are estimated by finite differences as

yi
j �

1
2�t

��3xi
j � 4xi

j�1 � xi
j�2�, i � 1, 2, 3, �7�

where j is the time index; concentrated differencing is
used in Eq. (7) to avoid the computational mode inher-
ent to centered “leapfrog” differencing. The standard
error �yi

of our “observations” can be estimated from a
time series of the second derivatives y
j

i as

�yi �
1
3

� y�j
i � �t2. �8�

Here, each time series y
j
i , i � 1, 2, 3 is constructed by

using the standard second-order-accurate second time
derivative of yj

i, i � 1, 2, 3, while the angle brackets
denote the standard deviation of this time series.
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2) REGRESSION MODEL: FORMULATION AND

PERFORMANCE

We assume that yi � fi(x) and that the right-hand
sides fi have the general quadratic form

fi � a0,i � �
n�1

3

an,ixn � �
n�1

3

�
p � n

ãnp,ixnxp. �9�

This requires us to estimate N � 1 � 3 � 3(3 � 1)/2 �
10 regression parameters, as well as their standard er-
rors, by a linear least squares fit; see Eq. (A2) in the
appendix. If the standard deviation �ri

of the residual
time series

ri � yi
j � f i

j �10�

is small compared to �yi
, the regression fit is considered

to be successful.
The summary of the fits to the Lorenz model is pre-

sented in Table 1. We illustrate changes in the proper-
ties of the fit for the different pairs of (T, �t) by dis-
playing the estimated values of the parameters s, r, b,
along with their standard errors �s, �r, and �b. The
parameter s is defined here as the coefficient in front of
x1 in Eq. (6a). Other parameters that we do not list,
including those in front of the nonlinear terms, are es-
timated equally well. We also show in Table 1 the val-

ues of �yi
and �ri

whose comparison gives a measure
of the goodness of fit. In general, for a given pair of
(T, �t), �ri

� �yi
, meaning that in all the cases we

present, the fit is statistically significant.
Inspection of Table 1 shows that the coefficients of

the Lorenz model are recovered with a good accuracy
by the quadratic regression fit for large enough T and
small enough �t. The fit is expected to give meaningful
results provided the record is long enough to capture
the internal periods of the system and the data points
sample this variability with sufficient frequency. Other
combinations than those shown in the table are pos-
sible, trading off the values of T against �t, provided
T � Tch and �t � Tch/26.

Of the two dependencies, the one on �t appears to be
more crucial: the shortest record with the finest resolu-
tion (0.992, 0.001) still recovers regression coefficients
that are quite close to the true coefficients, while the
longest record with the coarsest resolution (20, 0.016)
produces mediocre results. The accuracy of the results
for such a short record length T � 1, which barely
exceeds Tch � 0.75, is actually pretty surprising, given
the very long records required to produce a stable prob-
ability density function (PDF) for the Lorenz model.
The statistical significance of the result in this case also
ensures its stability with respect to choice of sample.

FIG. 1. Sample time series from the integration of the Lorenz model; solid line x1(t),
dashed line x2(t), dash–dotted line x3(t).
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3) THE PROBLEM OF COLLINEARITY AND

REGULARIZATION

Even though the estimated standard errors of the
regression parameters are large at coarse sampling
rates, their expected values turn out to be close to the
true values of the parameters, except for the case of the
shortest record and coarsest resolution (T, �t) � (0.992,
0.016), where the regression fit fails to reproduce a cor-
rect value of b � 8/3 even approximately, giving b �
1.27 � 4.08. Closer inspection of the fit shows that this
happens due to very large errors in determining a0,i,
which introduces large linear trends in the regression fit
when T is dangerously close to Tch. Reducing the num-
ber of regression coefficients to 9 by setting a0,i � 0
results in a much more acceptable value, b � 2.96 �
0.45, as shown in the row marked by an asterisk in
Table 1. Note that the standard error has been reduced
considerably as well. The standard error for the param-
eters s and r is also reduced, although the reduction is
not as drastic as that for b. The large reduction of �b, as
well as the smaller reductions in �s and �r, occur at the
expense of a small increase in �ri

.
This behavior is due to the phenomenon of collinear

ity, or ill conditioning, in which the vectors of predictor
variables are close to linear dependence (Wetherill
1986). Very large errors in determining the coefficient b
in the above example are due to a common linear trend
in the short time series of model variables. Discarding
a0,i eliminated this trend from consideration, and re-
sulted in an improved parameter estimation.

An objective way of screening out the coefficients
that do not contribute much to improving the accuracy
of the regression fit is known as principal component
regression (PCR; see the appendix). This approach re-
lies on the singular value decomposition (SVD) of the
so-called design matrix, whose N columns are the time
series of the N predictor variables. The idea behind
editing the regression fit coefficients is to define the
reciprocal of the design matrix’s singular value wn to be
zero once wn is small enough; a small wn means that the
associated singular vector does not contribute much to
the reduction of �ri

(Press et al. 1994). Setting to zero all
singular values that are smaller than W � � max{wn|N

n�1}
turns out, in the problem at hand, to be equivalent to
discarding the a0,i, as can be seen from the results pre-
sented in the last row of Table 1; � is a preset tolerance,
taken here as � � 0.001.

TABLE 1. Quadratic regression fit of the Lorenz model (see text for details).

T �t �y1 �y2 �y3 s �s r �r b �b �r1 �r2 �r3

0.001 0.01 0.02 0.02 10.02 0.0001 28.02 0.0003 2.66 0.0002 0.001 0.02 0.01
0.002 0.03 0.09 0.09 10.01 0.0006 28.04 0.002 2.67 0.001 0.005 0.03 0.01

20 0.004 0.14 0.35 0.35 9.98 0.004 28.10 0.009 2.69 0.007 0.02 0.08 0.05
0.008 0.56 1.40 1.41 9.85 0.02 28.31 0.05 2.75 0.04 0.09 0.29 0.21
0.016 2.30 5.78 5.81 9.36 0.12 28.88 0.31 2.87 0.23 0.36 1.08 0.88
0.001 0.01 0.02 0.02 10.02 0.0002 28.02 0.0004 2.66 0.0003 0.001 0.02 0.01
0.002 0.04 0.09 0.09 10.01 0.001 28.04 0.002 2.67 0.002 0.006 0.03 0.01

10 0.004 0.15 0.37 0.37 9.98 0.005 28.10 0.01 2.69 0.01 0.02 0.09 0.05
0.008 .059 1.49 1.49 9.86 0.03 28.31 0.08 2.75 0.05 0.09 0.30 0.23
0.016 2.41 6.13 6.16 9.38 0.18 28.91 0.45 2.87 0.30 0.38 1.12 0.94
0.001 0.01 0.02 0.02 10.02 0.0003 28.04 0.0007 2.66 0.0007 0.001 0.02 0.01
0.002 0.04 0.09 0.09 10.01 0.002 28.06 0.004 2.67 0.004 0.004 0.03 0.01

4.8 0.004 0.15 0.37 0.38 9.96 0.01 28.13 0.02 2.68 0.02 0.02 0.08 0.05
0.008 0.61 1.50 1.52 9.80 0.05 28.40 0.13 2.72 0.13 0.07 0.29 0.21
0.016 2.51 6.18 6.25 9.11 0.30 29.00 0.75 2.66 0.74 0.31 1.09 0.87
0.001 0.01 0.02 0.02 10.02 0.0005 28.05 0.001 2.66 0.001 0.001 0.01 0.01
0.002 0.04 0.10 0.10 10.00 0.003 28.06 0.007 2.67 0.008 0.003 0.02 0.01

2 0.004 0.16 0.39 0.39 9.95 0.02 28.12 0.04 2.68 0.04 0.01 0.06 0.05
0.008 0.64 1.57 1.58 9.76 0.09 28.29 0.22 2.71 0.26 0.05 0.21 0.19
0.016 2.62 6.44 6.53 9.00 0.53 28.60 1.30 2.60 1.48 0.21 0.75 0.80
0.001 0.01 0.03 0.03 10.02 0.001 28.05 0.002 2.67 0.004 0.002 0.01 0.002
0.002 0.04 0.11 0.11 10.00 0.006 28.07 0.01 2.66 0.02 0.01 0.01 0.01

0.992 0.004 0.18 0.44 0.44 9.95 0.03 28.16 0.08 2.62 0.13 0.004 0.05 0.04
0.008 0.72 1.76 1.79 9.76 0.18 28.44 0.45 2.43 0.71 0.02 0.18 0.18
0.016 2.97 7.24 7.40 8.94 1.08 29.04 2.64 1.27 4.08 0.12 0.68 0.70
0.016* 2.97 7.24 7.40 8.93 1.02 29.11 2.49 2.96 0.45 0.12 0.69 0.81
0.016** 2.97 7.24 7.40 8.92 1.02 29.10 2.49 2.94 0.44 0.12 0.69 0.80

* Assuming that a0,i � 0 in Eq. (9).
** Using PCR.
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Removing the sensitivity of results to small changes
in the data, as in the case of collinearity, is called regu-
larization. Using regularization techniques such as the
PCR is essential in most geophysically relevant ex-
amples (section 4), in which a large number of coeffi-
cients needs to be estimated from a limited amount of
data. In the latter situations, optimal regularization is
achieved via the so-called partial least squares (PLS)
procedure. PLS is analogous to PCR, but is based on
computing those linear combinations of the predictor
variables that are well correlated with the predictands,
while accounting for a large amount of variation in the
predictor field itself; the procedure is outlined in the
appendix.

b. The double-well potential

In the example in the previous subsection, we have
assumed that the standard errors of the “observed”
time derivatives (i.e., of our response variables) were
known, due to the deterministic nature of the Lorenz
model. We next consider the one-dimensional (1D)
double-well potential problem with stochastic forcing
(Ghil and Childress 1987, their section 10.3; Miller et al.
1994) as a simple example of a system with bimodal
variability, where the deterministic low-frequency sig-
nal is weak compared to the noise. This low signal-to-
noise ratio characterizes many geophysical applica-
tions. In performing the regression, one needs to find,
therefore, not only the coefficients of the deterministic
part of the equations, but also the major characteristics
of the stochastic forcing. This task leads us to introduce
the cross-validation method, in which the regression
analysis is performed on subsamples of the full time
series available.

The deterministic part of the dynamics in the double
well is described by

ẋ � �
dF

dx
� �4x�x2 � 1�, �11�

where

F �x� � x2�x2 � 2� �12�

is the potential function with wells that appear at x � 1
and x � �1, and a relative maximum at x � 0. Thus
x � 1 and x � �1 are the stable equilibria of Eq. (11),
while x � 0 is an unstable one. When stochastic forcing
is applied, the trajectory will move from the basin of
attraction of one stable equilibrium to the other, pro-
vided the amplitude of the forcing or the waiting time is
large enough. The stochastically forced double-well sys-
tem is described by

dx � �
dF

dx
dt � � db, �13�

where b is a Wiener process whose independent incre-
ments have mean zero and unit variance.

We numerically integrate a discretized version of
Eq. (13)

yj

�t
�

xj�1 � xj

�t
� �4xj��xj�2 � 1� �

1
�t

��b, �14�

with �t � 0.01 and � � 0.5 (Miller et al. 1994) for T* �
3000 time units. A sample record of length T � 50 from
the resulting time series is shown in Fig. 2. The ampli-
tude of the stochastic forcing is large enough for the
system to irregularly switch from one stable equilibrium
to the other on a time scale comparable to or shorter
than the characteristic time of the deterministic dynam-
ics. Moreover, the trajectory often dwells for quite
some time in the vicinity of the unstable fixed point x �
0 before falling into one of the two stable wells (Miller
et al. 1994).

We now fit a cubic polynomial in x to the response
variable y:

y � a0 � a1x � a2x2 � a3x3. �15�

Numerical experimentation shows that a reasonably
good fit can be obtained with sample records as short as
T � 50, although the regression coefficients are subject
to large sampling variation that will be quantified be-
low. Our goal is, once again, to estimate both the re-
gression coefficients {an}|3

n�0 and the amplitude of the
stochastic forcing �r. If the data record is long enough,
a way to do this is to divide the time series into shorter
samples and find the regression coefficients, their stan-
dard errors, and the residual-forcing amplitude for each
sample. The expected value of each of these quantities
can then be found as an average over all samples, while
their respective errors will be the standard deviations of
each quantity from its expected value over all samples.

The results of such a regression fit are presented as
experiment 1 in Table 2. We have divided a time series
of total length T* � 3000 units into segments of length
T � 50 that overlap by half of their length to increase
the number of samples.

The first of the two rows that summarize experiment
1 results contains the ensemble mean coefficients and
their (ensemble mean) standard errors (see the appen-
dix) from the multisample regression fit, while the
spread of these values over the whole ensemble is pre-
sented as standard deviations in the second row. The
errors in determining the regression parameters for
each sample are computed a posteriori, by using the
estimated �r for this sample. Both the regression coef-
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ficients and the noise amplitude are reconstructed well
by the fit. All of the quantities �r and �an

|3
n�0 change

very little from sample to sample (see second row).
In contrast to their standard errors, the values of the
coefficients vary considerably from sample to sample,
with an associated standard error that is larger than
the estimated standard error of each sample. For ex-
ample, the value of 1.11 in the first column, second row
of the table should be compared with �a1

� 0.75 of
experiment 1.

Since we have verified that �b is estimated with a
good accuracy �b � 0.5 � 0.005, it is possible to narrow
the error bars on model coefficients by using the entire
time series to estimate regression coefficients. The re-
sults are shown as experiment 2 of Table 2, and show
overall improvement in estimating the reconstructed

coefficients, as well as tight error bars. Experiments 3
and 4 correspond to experiments 1 and 2, but with the
coefficients a0 and a2 set to zero, as they are in the true
model, given by Eqs. (12) and (13). The quality of the
fit is similar to that of the full regression model, al-
though experiment 3 gives the best estimates of the true
model parameters.

In the procedure above, we have stopped one step
short of the full cross-validation procedure, in which
the available dataset is generally split into two parts: the
training set, which is used to construct the regression
model, and the validation set, whose statistical proper-
ties are compared with those of the regression model.
The splitting can be performed in several different ways
and the results of the statistical comparison between
the actual and regression-generated data are ensemble

TABLE 2. Regression fit of the double-well stochastic model (see text for details).

Expt No. a0 �a0
a1 �a1

a2 �a2
A3 �a3

�b

1 qty �0.14 0.75 3.94 0.85 0.1 0.34 �4.01 0.22 0.5
�qty 1.11 0.01 1.08 0.01 0.49 0.01 0.27 0.01 0.005

2 �0.07 0.117 4.07 0.132 0.07 0.05 �4.02 0.03 0.5
3 qty 0 0 3.99 0.84 0 0 �4.01 0.22 0.5

�qty 0 0 1.08 0.01 0 0 0.27 0.01 0.005
4 0 0 4.07 0.132 0 0 �4.02 0.03 0.5

FIG. 2. Sample time series from the integration of the double-well stochastic model.
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averaged over these different ways. This approach is
routinely applied to determine the number of factors
used in PCR and PLS (see the appendix). The statistical
measure one uses for comparing the observed and
model time series is application dependent. An ex-
ample of comparing the true and simulated statistical
distributions of the model variables will be given in the
following subsection.

c. A triple-well system

It is often speculated that large-scale atmospheric
flows, or global climate variability, bear some resem-
blance to the behavior of a stochastically driven particle
moving between several potential wells (Hasselmann
1999). Hannachi and O’Neill (2001) have thus consid-
ered a two-dimensional (2D) generalization of the
double-well problem. The stochastic system in this case
is governed by

dx�t� � ��V�x� dt � � db, �16�

where b � (b1, b2) is a random walk, and the potential
function V is given by

V�x1, x2� � ���x1
2 � x2

2� � ���x1 � 2a�2 � x2
2�

� ���x1 � a�2 � �x2 � a�3�2�

� b��x1 � a�2 � �x2 � a	�3�2�, �17�

with b � 0.12 and a � 0.37. The well shape is defined by

��x� � 
 exp� 1

x2 � a2� if |x| � a,

and 0 otherwise, �18�

with the parameter a � 21. The resulting triple-well
structure of V is shown in Fig. 3a. If the value of � is
chosen to be 0.05 and dt is replaced by �t � 1, the
model produces low-frequency behavior that consists of
jumps between the three potential wells, as shown in
Fig. 3b for the results of a sample integration of Eqs.
(16)–(18) having length T* � 50000.

We now fit to this dataset the general 2D polynomial
regression model, while changing the order m of the
polynomial P � Pm(x1, x2). For m � 1, P1(x1, x2) � ax1

� bx2 � c has three coefficients, the second-order poly-
nomial P2 will involve the same linear part (three co-
efficients), as well as a quadratic part dx2

1 � ex2
2 � fx1x2,

the cubic polynomial P3 will have an additional cubic
part gx3

1 � hx3
2 � kx2

1x2 � lx1x2
2, and so on. The true

underlying function that generated the data is not poly-
nomial in this case, since V(x1, x2) is based on exponen-
tial functions. We therefore assess the goodness of fit by
simulating the data using the regression model we have
constructed in each case, and comparing the 2D PDFs
of the true and simulated data. The results of such a
comparison are presented in Fig. 4.

A Gaussian mixture model is used to estimate each
PDF as a sum of k Gaussians (Hannachi 1997; Smyth et
al. 1999). The natural choice k for the triple well is k �
3. In addition to the contour plot of the PDF, we plot
the estimated centroids and covariance ellipses for all

FIG. 3. Triple-well model. (a) Contour plot of the potential function; contour interval CI � 0.003, with negative
contours dashed. (b) Scatterplot of a 50 000-unit-long integration; every 50th point is plotted.
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three clusters. The results for the data shown in Fig. 3b
are plotted in Fig. 4a. The mixture model captures the
structure of the potential function (Fig. 3a) fairly well,
with cluster centroids that are visually indistinguishable
from the potential-well bottoms. In Fig. 4b, we plot the
analogous results for the data simulated by our regres-
sion model with a polynomial Pm(x1, x2) of the order
m � 3. The regression model simulation reproduces
very well the triple-well structure of the true data.

Similar results are obtained by using higher-order re-
gression polynomials. We found, however, no signifi-
cant improvement of the fit’s accuracy over that of the
cubic regression model, as shown in Table 3.

As expected, the regression model is often numeri-
cally unstable when high-order polynomials are used,
due to the collinearity problem that arises in determin-

ing its coefficients. We have thus applied PCR for
m � 4, as described in section 2a and the appendix.
For m � 3, the number N of regression coefficients is
N � 10, and thus no editing is necessary, while the
tolerance � has to be increased to 5 � 10�4 for m � 11,
N � 78. In spite of the editing, the standard deviation of
the estimated residual stochastic forcing does not tend
to the true value of � � 0.05 with increasing m, al-
though it does stay very close to this value. The distance
between the true and estimated centroids �d also re-
mains small for all cases, although it increases slightly
with m. The fit with m � 5 produces marginally better
results than that with m � 3. In general, the parsimony
principle requires choosing the lowest-order fit, which
has the most stable coefficients (Smyth et al. 1999;
Hand et al. 2001); accordingly, the third-order fit is the
optimal one here.

d. Summary

The examples presented in this section show that in-
verse stochastic modeling that uses a polynomial right-
hand side to fit the data generated by a nonlinear pro-
cess can be quite effective, provided the dataset is well
sampled. The latter requirement is often satisfied to a
reasonable extent in model-generated datasets and in
observed data. Both types of data are typically charac-
terized, however, by a large number of degrees of free-
dom, so that the direct application of MPR is not fea-
sible and regularization techniques such as the PCR
and PLS should be used (see sections 2a, 2c, and the
appendix).

FIG. 4. Mixture model PDFs and clusters for the triple-well model. Cluster centroids are plotted as asterisks,
while the cluster boundaries are shown as projections of corresponding ellipses. (a) PDF of the data generated by
the triple-well model; (b) PDF of the data simulated by the inverse stochastic model based on fitting a cubic
polynomial of the predictor variables to the data.

TABLE 3. Triple-well model fit; N is the number of coefficients
in the polynomial used for regression fitting and � the tolerance
used in PCR to edit the singular values of the design matrix (see
text for details). The last three columns list the standard devia-
tions of the residual forcing �r1

and �r2
, as well as the sum �d of

the distances between the true and estimated cluster centroids.

Expt
No. FUNC N � �r1

�r2
�d

0 �V(x1, x2) — — 0.0500 0.0500 0
1 P3 10 0 0.0516 0.0516 0.0137
2 P5 21 0.5 � 10�4 0.0513 0.0511 0.0129
3 P7 36 10�4 0.0513 0.0510 0.0132
4 P9 55 4 � 10�4 0.0512 0.0511 0.0148
5 P11 78 5 � 10�4 0.0513 0.0512 0.0160
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The next section develops a general strategy for non-
linear inverse stochastic modeling of multivariate
datasets.

3. Multilevel inverse models

In this section and the next one, we construct inverse
stochastic models in the phase space of the leading
EOFs of the fields considered. The quadratic model
that we will use below has the general form

dxi � �xTAix � bi
�0�x � ci

�0�� dt � dri
�0�; 1 � i � I,

�19�

where x � {xi} is the state vector of dimension I. The
matrices Ai, the rows b(0)

i of the matrix B(0), and the
components c(0)

i of the vector c(0), as well as the com-
ponents r(0)

i of the residual forcing r(0), are determined
by least squares. If the inverse model contains a large
number of variables, the statistical distribution of r(0) at
a given instant is nearly Gaussian, according to the cen-
tral limit theorem (Von Mises 1964).

However, the stochastic forcing r(0) in Eq. (19) typi-
cally involves serial correlations and might also depend
on the modeled process x. We include, therefore, an
additional model level to express the time increments
dr(0) [equivalent, in numerical practice, to the time de-
rivative of the residual forcing r(0)] as a linear function
of an extended state vector [x, r(0)] � [xT, r(0)T]T, and
estimate this level’s residual forcing r(1). The linear de-
pendence is used since the non-Gaussian statistics of
the data have already been captured by the first non-
linear level. More (linear) levels are being added in the
same way, until the (L � 1)th level’s residual r(L�1)

becomes white in time, and its lag-0 correlation matrix
converges to a constant matrix:

dxi � �xTAix � bi
�0�x � ci

�0�� dt � ri
�0� dt,

dri
�0� � bi

�1��x, r�0�� dt � ri
�1� dt,

dri
�1� � bi

�2��x, r�0�, r�1�� dt � ri
�2� dt,

. . .

dri
�L� � bi

�L��x, r�0�, r�1�, . . . , r�L�� dt

� dri
�L�1�; 1 � i � I. �20�

The convergence of this procedure is guaranteed since,
with each additional level l � 1, we are accounting for
additional time-lag information, thereby squeezing out
any time correlations from the residual forcing. Section
4a formulates a simple and convenient convergence cri-
terion.

In practice, we approximate the increments dxi, dr(l)
i

as

dxi � xi
j�1 � xi

j, dri
�l� � ri

�l�, j�1 � ri
�l�, j, 1 � l � L,

�21�

where j is the time index, while dt is assumed to be
equal to the dataset’s sampling interval; without loss of
generality, we use dt � 1. The last-level residual’s
dr(L�1)

i covariance matrix is estimated directly from its
multivariate time series; in subsequent integrations of
the inverse model, this forcing is approximated as a
spatially correlated white noise.

One can in principle rewrite the multilevel system in
(20) as a single equation that involves time-lagged val-
ues of xi and r(l)

i ; the resulting construct is equivalent to
a multivariate version of autoregressive-moving aver-
age (ARMA) model (Box et al. 1994), except for the
nonlinear dependence on xi that we allow here, and that
is not present in standard ARMA models. Even for a
standard, linear model, though, the way we estimate the
coefficients of this model by successive introduction of
additional levels is novel; the main advantages of our
method are its algorithmic simplicity, numerical effi-
ciency, and dynamical interpretability.

The system in (20) describes a wide class of nonlin-
ear, non-Gaussian processes in a fashion that explicitly
accounts for the modeled process x feeding back on the
noise statistics. A multilevel representation similar to
Eq. (20) above has been used by Berloff and McWill-
iams (2002) in a slightly different form and context to
model tracer paths in a numerical model of wind-driven
ocean gyres [see their Eqs. (3), (15), (36), and (53)].
DelSole (1996, 2000) considered a special, linear and
autoregressive case of the system in (20) in order to
investigate the suitability of Markov models for repre-
senting quasigeostrophic turbulence.

The optimal number of state-vector components in
Eq. (20) is assessed in practice using Monte Carlo simu-
lations (see section 2b and the appendix): in these cross-
validation tests, the inverse model is trained on one
segment of the available data and is then used to esti-
mate the properties of the model evolution during the
validation interval. The measure used to assess the sta-
tistical model’s performance depends on the purpose at
hand: If the model is to be used for prediction, the
forecast skill, quantified by the correlation between the
forecast and observed fields or the root-mean-square
(rms) distance between the two is an appropriate mea-
sure of model performance; in the more theoretical ap-
plications below, it is the statistical characteristics of the
observed and modeled evolution, such as PDFs of
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model variables (see section 2c) and their power spec-
tra.

4. Geophysical examples

a. Analysis of an atmospheric model

1) CONSTRUCTION OF THE MULTILEVEL INVERSE

MODEL

We analyze first a 54 000-day-long simulation of the
three-layer QG (QG3) model of Marshall and Molteni
(1993) on the sphere; this particular simulation was car-
ried out at a T21 spatial resolution, sampled once a day,
and analyzed by Kondrashov et al. (2004). The model’s
low-frequency variability is equivalent barotropic. Our
inverse stochastic models are constructed, therefore, in
the phase space of the leading EOFs of the middle-
layer streamfunction, and we use quadratic regression.

The governing equations of the QG3 model—like
those of many purely fluid dynamical models of atmo-
spheric and oceanic flows (Lorenz 1963a,b; Ghil and
Childress 1987, their section 5.4; Dijkstra and Ghil
2005)—have only quadratic nonlinearities. Still, the
mode-reduction strategy of Majda et al. (1999, 2001,
2002, 2003) argues for the presence of cubic terms in the
optimal reduced model equations. Franzke et al. (2005)
have shown that these cubic terms introduce only slight
modifications into the barotropic reduced model dy-
namics, but C. Franzke and A. Majda (2005, personal
communication) have found them to be much more
important for the QG3 model’s dynamics. Our choice
of a quadratic model is dictated by the trade-off be-
tween the number of regression coefficients to be esti-
mated and the expected, weakly nonlinear dynamics of
the QG3 model’s behavior. In fact, we expect the quad-
ratic model to be quite adequate for a wide class of
geophysical problems, including those in which the in-
verse modeling is based on observational data alone,
rather than on mode reduction for a known dynamic
model (see section 4b here and Kondrashov et al. 2005).

Our inverse stochastic model has 15 primary vari-
ables, that is x in Eqs. (19) and (20) has 15 components.
It can be verified directly that the statistical distribution
of the first-level residual in this model is indistinguish-
able from Gaussian, so that this level adequately cap-
tured the nonlinearities present in the QG3 model.

Once we have chosen the number of primary vari-
ables, we still need to determine the number of addi-
tional linear levels in (20). To do so, we computed lag-0
and lag-1 covariance matrices of the residual forcing at
each level and found that the third-level residual forc-
ing is indeed white (i.e., its lag-1 covariance vanishes)

and that its spatial covariance does not change when
adding more levels. This means that if we estimate the
coefficients of the next, fourth-level equation for each
r(3)

i (1 � i � 15), we get, to a very good approximation,

dri
�3� � ri

�3�, j�1 � ri
�3�,j � �ri

�3�,j � ri
�4�,j, �22�

where dt � 1 and j is the time index: the only nontrivial
regression coefficient that multiples r(3)

i in the equation
for dr(3)

i should thus be equal to �1. In this case, r(4),j
i �

r(3),j�1
i , so that the residual r(4)

i , which is uncorrelated
with r(3)

i by construction, is a 1-day-lagged copy of r(3)
i ;

it thus follows that the lag-1 autocorrelation of both r(3)
i

and r(4)
i vanishes, while the third- and fourth-level re-

sidual’s lag-0 covariance matrices are identical.
The criterion above is thus a simple and convenient

way to determine the number of levels in a multilevel
regression model: the procedure is stopped when at
some level L the coefficient that multiplies each ri

(L�1)

is close to �1 and all the other coefficients are close to
zero. Figure 5 illustrates this convergence for the first-
variable residuals r(1)

1 , r(2)
1 , and r(3)

1 at the second third
and fourth levels of the 15-variable QG3 fit, respec-
tively. Similar convergence is achieved for all of the
other 14 variables (not shown).

The total number of variables in our inverse model is,
therefore, 45 (15 variables at each of the three levels).
By comparison, each of the three levels of the QG3
model in the Northern Hemisphere has 1024 state-

FIG. 5. Multiple linear regression coefficients for the first com-
ponents dr(0)

1 , dr(1)
1 , and dr(2)

1 of the second, third, and fourth level
of the inverse model given by Eq. (20) and constructed in the
phase space spanned by the 15 leading EOFs of the long QG3
model integration (see text): (a) level-2 (30 coefficients); (b)
level-3 (45 coefficients); and (c) level-4 (60 coefficients). In (a),
(b), and (c), the largest negative coefficient corresponds to the
one multiplying r(0)

1 , r(1)
1 , and r(2)

1 in Eq. (20), respectively.
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vector variables. Although the number of coefficients N
that need to be estimated in the inverse stochastic
model, N � {[15 � (15 � 1)/2 � 1 � 15] � 30 � 45} �
15 � 3165, is large, this model is much more numeri-
cally efficient than the QG3 model: the regression co-
efficients are determined offline, once and for all, while
the dimension of the state vector is almost an order of
magnitude smaller in the former model. The QG3-
generated time series of the leading PCs are compared
below with those produced by a 54 000-day-long inte-
gration of the inverse stochastic model; we also test the
sensitivity of the results to the number of variables and
of levels.

2) PERFORMANCE OF THE MULTILEVEL INVERSE

MODEL

The Gaussian-mixture PDFs of the datasets pro-
duced by the QG3 and the inverse model are compared
in Fig. 6 in the subspace of the QG3 model’s three
leading EOFs. The clusters were found using mixtures
of k � 4 Gaussian components in a phase subspace of
four leading EOFs, which capture 29% of the total vari-
ance. The optimal number of clusters is k � 4 for both
the QG3 simulation and for the dataset generated by
the inverse model, as determined by the cross-
validation procedure of Smyth et al. (1999); see also
Kondrashov et al. (2004). The locations, shapes and
sizes of clusters, and hence the general shape of the
PDF, are well reproduced by the inverse model simu-
lation in Fig. 6.

The composites over the data points that belong to
each of the ellipses in Fig. 6 represent, in physical space,
the patterns of four planetary flow regimes (Legras and
Ghil 1985; Ghil and Childress 1987, see chapter 6; Mo
and Ghil 1988; Cheng and Wallace 1993; Kimoto and
Ghil 1993a,b; Hannachi 1997; Smyth et al. 1999; Han-
nachi and O’Neill 2001; Molteni 2002). In Fig. 6a, clus-
ter AO� occupies a distinctive region on the PDF ridge
that stretches along PC-1. It corresponds to the low-
index phase of the well-known Arctic Oscillation (AO;
Deser 2000; Wallace 2000). The clusters AO�, (North
Atlantic Oscillation) NAO�, and NAO� are located
around the global PDF maximum, with the centroid of
AO� to the left and below, NAO� above, and NAO�

slightly to the right of this maximum, respectively.
These four regimes are not identical to but in fairly
good agreement with the observational results of
Cheng and Wallace (1993) and Smyth et al. (1999); see
also Ghil and Robertson (2000) and Kondrashov et al.
(2004).

The streamfunction anomalies associated with each
regime centroid of the QG3 model are plotted in Fig. 7.
The spatial correlations between these anomaly pat-

terns and those obtained from the inverse model (not
shown) all exceed 0.9. They are thus much higher than
the correlations obtained by D’Andrea and Vautard
(2001) and D’Andrea (2002), who used a reduced de-
terministic model obtained by a statistical–dynamical
approach to reproduce the behavior of the largest
scales in the QG3 model.

Given that our inverse model captures well the loca-
tion of the QG3 model clusters, the former can be used
to relate these statistical features to the dynamical
properties of the latter. Preliminary results indicate, in
particular, that the AO� cluster corresponds to a steady
state of the unperturbed, deterministic part of the in-
verse model (not shown).

To examine how well the inverse model reproduces
the low-frequency variability of the QG3 model, we
applied singular spectrum analysis (SSA; Vautard and
Ghil 1989; Dettinger et al. 1995; Ghil et al. 2002) to the
time series produced by the two models, as shown in
Fig. 8. No significant pairs stand out in the QG or the
inverse model spectra. The general shape of the QG3
spectrum is reproduced quite well by the inverse model
simulation.

3) COMPARISON WITH ONE-LEVEL INVERSE

MODEL

In contrast to the multilevel inverse model, the spec-
tra from the one-level inverse model simulation are sta-
tistically indistinguishable from a red spectrum (not
shown). Despite this, the one-level fit turns out to be
sufficient to reproduce the clusters in Fig. 6, as well as
the general shape of the PDF there (not shown). The
cluster locations in this case are, however, sensitive to
the particular realization of the white noise forcing and
change significantly from sample to sample; moreover,
some realizations of a given stochastic model, with co-
efficients obtained by a one-level regression, are un-
stable, in the sense that their trajectories blow up in
finite time. The cluster locations obtained with the
three-level MPR model are not sensitive to the choice
of the random forcing sample and the inverse model
simulations never result in unphysically large values of
its variables.

The non-Gaussian shape of the PDF in Fig. 6, and
hence the presence of multiple regimes, is due to non-
linearities in the main level of the inverse model in (20),
while the statistics of the regimes is sensitive to the way
the residual r(0) depends on the large-scale flow x. Mol-
teni (2002) has reviewed semiempirical parameteriza-
tions of such an eddy feedback based on long libraries
of residual tendencies, estimated as a running mismatch
between an assumed large-scale model and a detailed
model or observational data (Vautard and Legras
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FIG. 6. Mixture model PDFs and clusters for the (left) QG3 model and (right) an inverse stochastic model. Same
symbols and conventions as in Fig. 4. (a), (b), (c) Projections onto pairs of EOFs, as indicated on the axes. The
cluster centoid indices correspond to 1 � AO�, 2 � AO�, 3 � NAO�, and 4 � NAO� (see also Fig. 7).
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1988; Molteni 1996a,b; Da Costa and Vautard 1997).
D’Andrea and Vautard (2001) and D’Andrea (2002)
have recently applied this technique to a truncated ver-
sion of the QG3 model. The main disadvantage of this
approach is that the reduced model formulation with
the eddy feedback is not analytical, and is also fairly
difficult to analyze numerically. In contrast, our purely
empirical modeling method provides a simple and effi-
cient way to quantify and analyze the eddy feedbacks.

4) SENSITIVITY TO THE NUMBER OF MODEL

VARIABLES

Much of the QG3 model behavior above can be mod-
eled with as few as 4 predictor variables (not shown)

and the results for 10 variables (not shown either) are
very similar to those for 15 variables (Figs. 6–8). How-
ever, when using fewer predictor variables (such as 4 or
10), the location of cluster centroids is much more sen-
sitive to the particular random forcing samples, that is,
two different realizations of the inverse model simula-
tion can be characterized by one or more clusters being
significantly shifted from their position in the QG3
model simulation. No such sensitivity is observed in
either the QG3 model or the 15-variable inverse model.
The choice of 15 predictor variables seems to be opti-
mal: the inverse model fit to the data becomes worse
again for 20 variables (not shown).

The optimality of the fit for an intermediate, and

FIG. 7. Mixture model centroids, showing streamfunction anomaly maps at 500 hPa, for the QG3 model: (a)
NAO�; (b) NAO�; (c) AO�; and (d) AO�. Negative contours are dashed and landmasses are shaded; 20 contour
levels between maximum and minimum values are used, with the following intervals (in 106 m2 s�1): (a) 1.1; (b) 0.8;
(c) 0.8; and (d) 1.1. Reproduced from Kondrashov et al. (2004), with the permission of the AMS.
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FIG. 8. Singular spectrum of the PCs used in Fig. 6: (left) QG3 model and (right) an inverse stochastic model.
The size of plus signs that are used to plot the spectrum roughly corresponds to the size of the ad hoc error bars
of Ghil and Mo (1991). Light dashed curves represent the 2d and 97th percentile of the chi-square red noise test
of Allen and Smith (1996).
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fairly low, number of regression model variables can be
understood in the following way. Too few variables
clearly cannot capture both the non-Gaussian structure
of the phase-space PDF and the deviations from a
purely red spectrum of time dependence that the non-
linear QG3 dynamics engenders. If, on the other hand,
too high a number of degrees of freedom is used, we
start to resolve explicitly some of the high-frequency
dynamics, but not all of it. It is highly plausible, there-
fore, that such a semiresolved model would produce
unphysical and unstable results.

b. Analysis of NH geopotential height anomalies

We analyze next 44 yr of NH winter geopotential
height anomalies (1 December 1949–31 March 1993).
The dataset of 700-mb heights was compiled by the
National Oceanic and Atmospheric Administration
(NOAA) Climate Prediction Center; see Smyth et al.
(1999) for details. A shorter, 37-winter sample of the
same dataset had been used by Kimoto and Ghil
(1993a,b). All analyses of this section were performed
on the 44 � 90 � 3960 daily maps of winter data, de-
fined as 90-day sequences starting on 1 December of
each year.

The length of the interval of available data in this
case is thus 15 times shorter than in the QG3 model
simulation of the previous subsection. We need, there-
fore, to apply a regularized version of the least squares
procedure, namely the PLS method (see sections 2a, 2c,
and the appendix). For the QG3 model simulation, on
the other hand, the PCR and PLS procedures produce
the same coefficients as the usual regression, without
any regularization: this happens because the length of
the dataset is sufficient to resolve well the angles be-
tween different predictor variables and the problem of
collinearity does not occur.

For the case of this section, an inverse stochastic
model with nine predictor variables at the first level
produces the best results. The necessary number of in-
verse model levels is determined by the procedure de-
scribed in the previous subsection and turns out to be
equal to 3.

The observational data and simulated time series are
compared in Fig. 9 using again both PDFs and singular
spectra. The analysis is carried out in the subspace
spanned by the three leading EOFs and the PDFs of
both the data and the inverse model are approximated
using three Gaussian components (see Smyth et al.
1999). In Fig. 9a, the PDFs are plotted in the EOF-1–
EOF-2 plane. Like in the previous subsection, the gen-
eral shape of the PDF, as well as the locations and
overall shapes of the clusters are reproduced fairly well

by the inverse model, while finer details of the clusters
are not captured equally well. The spatial correlations
between the anomaly patterns associated with the clus-
ter centroids in the data (Fig. 9a, left panel; see Smyth
et al. 1999 for the description of these patterns) and the
inverse model simulation (Fig. 9a, right panel) are
higher than 0.95. The general shape of the SSA spectra
is, once again, remarkably similar in the data and our
inverse model simulation; compare left and right panels
in Figs. 9b,c.

If we use a smaller or larger number of predictor
variables to construct a three-level inverse model, the
results are not as good as in the nine-variable case; the
two-level model results with nine primary variables, on
the other hand, are similar to those of the three-level
model. Most of the model realizations produce time
series whose properties replicate those of the observed
one (see Figs. 9b,c); still, in a few cases the inverse
model simulates unphysically large values of the vari-
ables, pointing to a conditional instability in the mod-
el’s dynamical operator. Using a different number of
model variables and levels failed to suppress this insta-
bility. This property is due to an insufficient sample of
predictor-variable fields used to construct our inverse
model.

The above instability occurs, however, quite rarely:
on average, the system tends to wander to a region with
unrealistically large values of the variables once per
30 000 days of the inverse model integration. We can, in
fact, avoid such situations altogether, by tracking the
instantaneous norm of the modeled-state vector; if val-
ues of this norm that exceed a given threshold occur, we
“rewind” the modeled time series by a few time steps
and restart the model with a different realization of the
random forcing. Such “sanity checks” are quite com-
mon in the engineering practice of nonlinear estimation
and control theory (Miller et al. 1994).

The PDF and spectra of the long modeled time series
so obtained are very close to the ones shown in Fig. 9.
We have thus constructed a nonlinear model that de-
scribes well the statistical properties of the observed
data.

5. Summary and discussion

We have presented a methodology for constructing
data-based inverse stochastic models that allow one to
isolate nonlinear dynamical processes that govern the
observed variability of climatic fields. These models can
also be used for climate prediction (see Kondrashov et
al. 2005).

The simplest such model is the so-called linear in-
verse model (LIM; Penland 1989, 1996; Penland and
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Ghil 1993; Penland and Sardeshmukh 1995; Penland
and Matrosova 1998; Johnson et al. 2000; Winkler et al.
2001). A LIM considers the dynamics to be linear,
stable, and stochastically forced. The linear determin-

istic propagator, as well as the structure of the stochas-
tic forcing, are estimated directly from observations by
multiple linear regression (MLR), while assuming the
forcing to be white in time. The modifications we in-

FIG. 9. PDFs and singular spectra of NH wintertime geopotential heights. (right) Data; (left) inverse stochastic
model. Same symbols and conventions as in Figs. 4 and 8.
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troduce to this methodology deal with relaxing the as-
sumptions of linearity and white noise.

To this end, we assume the dynamical propagator of
the inverse stochastic model to be a polynomial func-
tion of the climate-state predictor variables, and use
multiple polynomial regression (MPR), rather than
MLR, to estimate the parameters of this function. In
section 2 we have shown that, provided a long enough
dataset, MPR successfully reconstructs the coefficients
of two “toy” models: the deterministic Lorenz (1963a)
model (Fig. 1; Table 1) and the stochastically perturbed
double-well (Ghil and Childress 1987, their section
10.3; Miller et al. 1994) model (Fig. 2; Table 2). More-
over, the inverse stochastic model based on a third-
order polynomial captures the three-regime probability
density function (PDF) of the 2D, triple-well model of
Hannachi and O’Neill (2001) (Figs. 3, 4; Table 3).

In geophysical applications to phenomena with many
degrees of freedom, robust inverse models can only be
constructed in the phase space of the leading empirical
orthogonal functions (EOFs). The number of predictor
variables to include in the model is best determined by
cross validation to optimize the model’s performance.
Depending on the motivation, this optimization can be
carried out in terms of the forecast skill or in terms of
other statistical properties, such as the structure of the
phase-space PDF and power spectra of the observed
and modeled fields. In typical situations, the estimated
stochastic forcing in an inverse model is not white in
time and involves serial correlations that arise, among
other things, due to the dependence of the stochastic
forcing on the modeled flow. In section 3, we have for-
mulated inverse stochastic models that involve addi-
tional levels simulating this dependence. The number
of levels is chosen so that the residual forcing at the last
level be white in time (Fig. 5).

The major technical difficulty that arises in formulat-
ing nonlinear inverse models is associated with the
large number of regression parameters that need to be
estimated. If the data record is short, direct application
of MPR might result in meaningless and unstable val-
ues for the estimated parameters. This problem can be
solved, fully or at least partially, by regularization tech-
niques (see sections 2a, c and the appendix), such as
principal component regression (PCR; Wetherill 1986;
Press et al. 1994) or the partial least squares (PLS)
approach (Wold et al. 1984; Höskuldsson 1996). We
recommend the latter method for general geophysical
applications.

In section 4, we have applied our MPR methods to
the analysis of Marshall and Molteni’s (1993) three-
layer QG (QG3) model and to NH geopotential height
anomalies; in the latter case, PLS regularization was

also used. For both QG3-generated (Figs. 6–8) and ob-
served height data (Fig. 9), the optimal inverse model
captures well the non-Gaussian structure of the PDF, as
well as the detailed spectra of the data. The reduced
models we have built can thus be used to further ex-
plore the macroscopic, coarse-grained processes behind
the QG3 model’s dynamical behavior and its connec-
tion to the observed data statistics.

The multiple regime structure of the QG3 model’s
PDF can be captured by a single-level, quadratic in-
verse model. In this case, however, the inverse model’s
PDF is very sensitive to the sampling, and its trajecto-
ries may diverge in time for some of the stochastic-
forcing realizations; in contrast, the multilevel versions
of the quadratic inverse model are more robust. More-
over, the spectra of the single-level inverse model are
statistically indistinguishable from a red spectrum,
while those of the multilevel model resemble the spec-
trum of the QG3 model’s principal components. The
multilevel model is stable and much less sensitive to
sampling. This smaller sensitivity and greater stability is
due to the stabilizing feedback between high- and low-
frequency components of the flow, as expressed in the
mathematical formulation (20) of this model’s addi-
tional levels. In the present context, we speculate that
this feedback is the counterpart of the much-discussed
synoptic eddy–large-scale flow feedback.

A different way to quantify this feedback has been
suggested in semiempirical studies that assume a re-
duced-dynamics model, while the unresolved processes
are being parameterized statistically by accumulating
long libraries of residual flow dependence on the large-
scale flow (Vautard and Legras 1988; Molteni 1996a,b;
Da Costa and Vautard 1997; Molteni 2002). D’Andrea
and Vautard (2001) and D’Andrea (2002) have recently
applied this technique to construct a large-scale model
by projecting Marshall and Molteni’s (1993) QG3
model on its leading EOFs. Unlike these studies, our
multilevel approach does not assume any explicit dy-
namical model, deducing it instead from the data. De-
spite that, the correlation between full and reduced
model clusters in our case is higher than in D’Andrea
(2002), while our mathematical representation of the
eddy feedback is simpler and easier to interpret.

Majda et al. (1999, 2001, 2002, 2003) have developed
a strategy for systematic mode reduction in determin-
istic models that govern geophysical flows. This strat-
egy has recently been applied to the analysis of a baro-
tropic atmospheric model by Franzke et al. (2005) and
to the QG3 model (C. Franzke and A. Majda 2005,
personal communication). In particular, the optimal set
of reduced equations that approximate the underlying
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model’s quadratic nonlinearities has been shown to in-
volve cubic nonlinearities and additive, as well as mul-
tiplicative white noise. In contrast, our regression pro-
cedure explicitly involves only quadratic nonlinearities
and an additive noise.

The number of variables in our reduced model is
much less than the number of degrees of freedom in the
full QG3 model, but it is still larger than the number of
modes that contain most of the model’s low-frequency
variance (EOFs 1–4). The higher-ranked EOFS 5–15
can thus be associated with intermediate-scale modes,
while the additive noise in our reduced model’s highest
level represents the smallest scales, captured by EOFs
16 and higher in the full QG3 model.

In this interpretation, the inverse model we construct
by MPR from the data will involve quadratic nonlin-
earities and additive, as well as multiplicative noise;
cubic nonlinearities do not explicitly enter the equa-
tions. While Franzke et al. (2005) have shown that the
effect of cubic nonlinearities on their reduced barotro-
pic model’s evolution is weak, C. Franzke and A. Majda
(2005, personal communication) argue for a much more
important role of such interactions in the QG3 model’s
behavior. This greater role of cubic nonlinearities might
be related to a smaller number of leading modes re-
tained by Franzke and Majda.

Direct comparison of our method with the mode-
reduction strategy of Majda and coauthors is difficult at
this stage: our strategy emphasizes separation in spatial
scales, with large, intermediate, and small scales, theirs
emphasizes separation in temporal scales, with slow
and fast scales only. The similarities and differences
between these two methods, when applying both to a
fairly realistic atmospheric model, like QG3, are a mat-
ter of considerable interest and further investigation.
We note, however, that our regression technique is en-
tirely data driven, and can be used when no dynamical
model is explicitly associated with the dataset (see also
Kondrashov et al. 2005).

Finally, we recall that the main ingredients of the
regression techniques employed in this study (linear
least squares, MPR, PCR, PLS) are not new. The pri-
mary purpose of this paper is to adapt these techniques
to realistic geophysical situations and thus encourage
their use for the analysis of complex geophysical phe-
nomena.
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APPENDIX

General Linear Least Squares

The general problem posed by statistical regression is
to minimize the functional

�2 � |Da � y|2, �A1�

where y � {yq}|Q
q�1 is the vector whose components are

the observed values of the response variable, D �
{Xqn(x)} is the so-called design matrix, whose nth col-
umn consists of Q-observed values of a specified func-
tion Xn|N

n�1 of the state vector x � {xi}| I
i�1, and a is the

vector of N regression parameters to be estimated. For
example, in the case of MLR, N � I and Xi � xi, 1 � i
� I. For MPR, the number N of basis functions exceeds
the dimension I of the state vector and, therefore, ad-
ditional regression parameters have to be estimated.

The solution of (A1) is

a � C�1DTy, �A2�

where C � DDT is the covariance of the design matrix.
It can be shown that the entries of C/�2, where � is the
standard error of observations, represent the standard
errors of estimated parameters a. If any two or more
columns of D are nearly linearly dependent, the inver-
sion (A2) is ill conditioned. A way to solve this problem
of collinearity is to regress y onto the EOFs of D, which
are orthogonal and, therefore, well conditioned. This is
called PCR (Wetherill 1986).

Let the SVD of D be

D � UWVT, �A3�

where U has the dimension of D, W is the diagonal
matrix of N singular values (principal component
scores), and V is an N � N orthogonal matrix. Then the
solution of Eq. (A1) is

a � �
n�1

N �U�n� · y

wn
�V�n� �

1
w1

V�1� � . . . �
1

wN
V�N�,

�A4�

where U(n) and V(n) are columns of U and V, respec-
tively, and each � is followed by a standard deviation.
The idea of regularization is to edit out small singular
values, which do not contribute much to reducing the �2

of the dataset (Press et al. 1994). The number of PCs, or
factors (as they are often called in the statistical litera-
ture), to use is typically determined by cross validation,
a procedure where the available data is split between
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training and validation sets and the validation is carried
out for various numbers of retained PCs in order to
choose one number that optimizes the predictive ability
of the model.

Yet another regularization method is the PLS proce-
dure (Wold et al. 1984; Höskuldsson 1996), which is
analogous to PCR, but in some sense is more powerful,
since it not only captures a large fraction of variance in
the predictor variables, but also achieves high correla-
tion with the response variables. This is done by rotat-
ing PC scores and loadings (or PCs and EOFs, in the
meteorological terminology) to maximize covariance
between predictor and response variables. The number
of rotated PCs (Richman 1986) to use is determined by
cross validation, as in PCR.

While conceptually simple, PLS is algorithmically
complex and has various formulations; see Jolliffe
(2002, chapter 8.4) and references there. We have
found the PLS method to be superior to PCR in the
geophysical examples used in this study. (A software
package containing the PLS routines is available online
at http://www.software.eigenvector.com.)
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