

Empirical Mode Reduction and its Applications to Nonlinear Models in Geosciences

D. Kondrashov

University of California, Los Angeles

Joint work with

Michael Ghil, Ecole Normale Supérieure and UCLA;

Sergey Kravtsov, U. Wisconsin–Milwaukee;

Andrew Robertson, IRI, Columbia U.

<http://www.atmos.ucla.edu/tcd/>

Motivation

- Sometimes we have data but no models: empirical approach.
- We want models that are as simple as possible, but not any simpler.

Criteria for a good data-derived model

Capture interesting dynamics: regimes, nonlinear oscillations.

- Intermediate-order deterministic dynamics easy to analyze analytically.
- Good noise estimates.

Linear Inverse Models (LIM)

Penland, C., 1996: A stochastic model of Indo-Pacific sea-surface temperature anomalies. *Physica D*, **98**, 534–558.

Penland, C., and L. Matrosova, 1998: Prediction of tropical Atlantic sea-surface temperatures using linear inverse modeling. *J. Climate*, **11**, 483–496.

Linear inverse model (LIM)

- We aim to use data in order to estimate the two matrices, \mathbf{B} and \mathbf{Q} , of the stochastic linear model:

$$d\mathbf{X} = \mathbf{B}\mathbf{X} \cdot dt + d\xi(t), \quad (1)$$

where \mathbf{B} is the (constant and stable) dynamics matrix, and \mathbf{Q} is the lag-zero covariance of the vector white-noise process $d\xi(t)$.

- More precisely, the two matrices \mathbf{B} and \mathbf{Q} are related by a **fluctuation-dissipation relation**:

$$\mathbf{B}\mathbf{C}(0) + \mathbf{C}(0)\mathbf{B}^t + \mathbf{Q} = 0, \quad (2)$$

where $\mathbf{C}(\tau) = \mathbb{E}\{\mathbf{X}(t + \tau)\mathbf{X}(t)\}$ is the lag-covariance matrix of the process $\mathbf{X}(t)$, and $(\cdot)^t$ indicates the transpose.

- One then proceeds to estimate the Green's function $\mathbf{G}(\tau) = \exp(\tau\mathbf{B})$ at a given lag τ_0 from the sample $\mathbf{C}(\tau)$ by

$$\mathbf{G}(\tau_0) = \mathbf{C}(\tau_0)\mathbf{C}^{-1}(0).$$

- Linear inverse models (LIM) are good least-square fits to data, but don't capture all the (nonlinear) processes of interest.

Nonlinear reduced models (MTV)

Majda, A. J., I. Timofeyev, and E. Vanden-Eijnden, 1999: Models for stochastic climate prediction. *Proc. Natl. Acad. Sci. USA*, **96**, 14687–14691.

Majda, A. J., I. Timofeyev, and E. Vanden-Eijnden, 2003: Systematic strategies for stochastic mode reduction in climate. *J. Atmos. Sci.*, **60**, 1705–1722.

Franzke, C., and Majda, A. J., 2006: Low-order stochastic mode reduction for a prototype atmospheric GCM. *J. Atmos. Sci.*, **63**, 457–479.

Nonlinear stochastic model (MTV)-I

- Let \mathbf{z} be a **vector** decomposed into a **slow** ("climate") and a **fast** ("weather") vector of variables, $\mathbf{z} = (\mathbf{x}, \mathbf{y})$.

We model \mathbf{x} **deterministically** and \mathbf{y} **stochastically**, via the following **quadratic nonlinear dynamics**

$$\frac{d\mathbf{x}}{dt} = L_{11}\mathbf{x} + L_{12}\mathbf{y} + B_{11}^1(\mathbf{x}, \mathbf{x}) + B_{12}^1(\mathbf{x}, \mathbf{y}) + B_{22}^1(\mathbf{y}, \mathbf{y}),$$

$$\frac{d\mathbf{y}}{dt} = L_{21}\mathbf{x} + L_{22}\mathbf{y} + B_{11}^2(\mathbf{x}, \mathbf{x}) + B_{12}^2(\mathbf{x}, \mathbf{y}) + B_{22}^2(\mathbf{y}, \mathbf{y}).$$

- In stochastic modeling, the explicit nonlinear self-interaction for the variable \mathbf{y} , i.e. $B_{22}^2(\mathbf{y}, \mathbf{y})$, is represented by a linear stochastic operator:

$$B_{22}^2(\mathbf{y}, \mathbf{y}) \approx -\frac{\Gamma}{\varepsilon}\mathbf{y} + \frac{\sigma}{\sqrt{\varepsilon}}\dot{\mathbf{W}}(t),$$

where Γ and σ are matrices and $\dot{\mathbf{W}}(t)$ is a **vector-valued** white-noise.

Michael Ghil

ghil@imd.ens.fr

Nonlinear stochastic model (MTV)-II

- The parameter ε measures the ratio of the correlation time of the weather and the climate variables, respectively, and $\varepsilon \ll 1$ corresponds to this ratio being very small.
- Using the scaling $t \rightarrow \varepsilon t$, we derive the stochastic climate model:

$$\frac{d\mathbf{y}}{dt} = \frac{1}{\varepsilon}(L_{11}\mathbf{x} + L_{12}\mathbf{y} + B_{11}^1(\mathbf{x}, \mathbf{x}) + B_{12}^1(\mathbf{x}, \mathbf{y})),$$

$$\frac{d\mathbf{y}}{dt} = \frac{1}{\varepsilon}(L_{21}\mathbf{x} + L_{22}\mathbf{y} + B_{11}^2(\mathbf{x}, \mathbf{x}) + B_{12}^2(\mathbf{x}, \mathbf{y})) - \frac{\Gamma}{\varepsilon^2}\mathbf{y} + \frac{\sigma}{\varepsilon}\dot{\mathbf{W}}(t).$$

- In practice, the climate variables are determined by a variety of procedures, including leading-order **empirical orthogonal functions (EOFs)**, zonal averaging in space, low-pass and high-pass time filtering, or a combination of these procedures.

Michael Ghil

ghil@imd.ens.fr

- MTV model coefficients are predicted by the theory.
- Relies on scale separation between the resolved (slow) and unresolved (fast) modes
- Their estimation requires very long libraries of the full model's evolution.
- Difficult to separate between the slow and fast dynamics (MTV).

Key ideas

- Nonlinear dynamics:

$$\dot{\mathbf{x}} = \mathbf{Lx} + \mathbf{N(x)}.$$

- Discretized, quadratic:

$$dx_i = (\mathbf{x}^T \mathbf{A}_i \mathbf{x} + \mathbf{b}_i^{(0)} \mathbf{x} + c_i^{(0)}) dt + dr_i^{(0)}; \quad 1 \leq i \leq I.$$

- Multi-level modeling of red noise:

$$dx_i = (\mathbf{x}^T \mathbf{A}_i \mathbf{x} + \mathbf{b}_i^{(0)} \mathbf{x} + c_i^{(0)}) dt + r_i^{(0)} dt,$$

$$dr_i^{(0)} = \mathbf{b}_i^{(1)}[\mathbf{x}, \mathbf{r}^{(0)}] dt + r_i^{(1)} dt,$$

$$dr_i^{(1)} = \mathbf{b}_i^{(2)}[\mathbf{x}, \mathbf{r}^{(0)}, \mathbf{r}^{(1)}] dt + r_i^{(2)} dt,$$

...

$$dr_i^{(L)} = \mathbf{b}_i^{(L)}[\mathbf{x}, \mathbf{r}^{(0)}, \mathbf{r}^{(1)}, \dots, \mathbf{r}^{(L)}] dt + dr_i^{(L+1)}; \quad 1 \leq i \leq I.$$

Nomenclature

Response variables:

$$\{y^{(n)}\} (1 \leq n \leq N) \equiv \{y^{(1)}, \dots, y^{(N)}\}$$

Predictor variables:

$$\{x^{(n)}\} (1 \leq n \leq N) \equiv \{x^{(1)}, \dots, x^{(N)}\}$$

- Each $y^{(n)}$ is *normally distributed* about $\hat{y}^{(n)}$
- Each $x^{(n)}$ is *known exactly*. *Parameter set* $\{a_p\}$:

$$\hat{y} = f(x; a_1, \dots, a_P) \text{ -- known dependence of } f \text{ on } \{x^{(n)}\} \text{ and } \{a_p\}.$$

REGRESSION: Find $\{a_p\} (1 \leq p \leq P)$

LIM extension #1

- Do a least-square fit to a *nonlinear function of the data*:

J response variables: $y_i^{(n)} \equiv (x_i^{(n+1)} - x_i^{(n)})/\Delta t$

Predictor variables (example – quadratic polynomial of *J* original predictors):

$$\hat{y}_i = a_{0,i} + \sum_{j=1}^J a_{j,i} x_j + \sum_{j=1}^J \sum_{k \geq j} \tilde{a}_{jk,i} x_j x_k$$

Note: Need to find many more regression coefficients than for LIM; in the example above $P = J + J(J+1)/2 + 1 = O(J^2)$.

Regularization

- *Caveat:* If the number P of regression parameters is comparable to (i.e., it is not much smaller than) the number of data points, then the least-squares problem may become ill-posed and lead to unstable results (overfitting) ==> One needs to transform the predictor variables to *regularize* the regression procedure.
- Regularization involves *rotated predictor variables*: the orthogonal transformation looks for an “optimal” linear combination of variables.
- “Optimal” = (i) rotated predictors are nearly uncorrelated; and (ii) they are maximally correlated with the response.
- Canned packages available.

LIM extension #2

- *Motivation:* Serial correlations in the residual.

$$\text{Main level, } l = 0: \quad (x^{n+1} - x^n)/\Delta t = a_{x,0}x^n + r_0^n$$

$$\text{Level } l = 1: \quad (r_0^{n+1} - r_0^n)/\Delta t = a_{x,1}x^n + a_{r_0,1}r_0^n + r_1^n$$

... and so on ...

$$\text{Level } L: \quad r_{L-1}^{n+1} - r_{L-1}^n = \Delta t[a_{x,L}x^n + \dots] + \Delta r_L$$

- r_L – Gaussian random deviate with appropriate variance
- If we suppress the dependence on x in levels $l = 1, 2, \dots, L$, then the model above is formally identical to an ARMA model.

Empirical Orthogonal Functions (EOFs)

- We want models that are as simple as possible, but not any simpler: use leading **empirical orthogonal functions** for data compression and capture as much as possible of the useful (predictable) variance.
- Decompose a spatio-temporal data set $\mathbf{D}(t,s)(t = 1, \dots, N; s = 1, \dots, M)$ by using **principal components (PCs)** – $\mathbf{x}_i(t)$ and **empirical orthogonal functions (EOFs)** – $\mathbf{e}_i(s)$: diagonalize the $M \times M$ spatial covariance matrix \mathbf{C} of the field of interest.

$$\begin{aligned}\mathbf{C} &= \frac{1}{N}(\mathbf{D} - \langle \mathbf{D} \rangle)^t(\mathbf{D} - \langle \mathbf{D} \rangle) \\ \mathbf{C}\lambda_i &= \lambda_i \mathbf{e}_i, \mathbf{x}_i = (\mathbf{D} - \langle \mathbf{D} \rangle)\mathbf{e}_i\end{aligned}$$

- EOFs are optimal patterns to capture most of the variance.
- Assumption of robust EOFs.
- EOFs are statistical features, but may describe some dynamical (physical) mode(s).

Empirical mode reduction (EMR)–I

- *Multiple predictors*: Construct the reduced model using J leading PCs of the field(s) of interest.
- *Response variables*: one-step time differences of predictors; step = sampling interval = Δt .
- Each response variable is fitted by an *independent* multi-level model:
The *main level* $l = 0$ is *polynomial* in the predictors; all the other levels are linear.

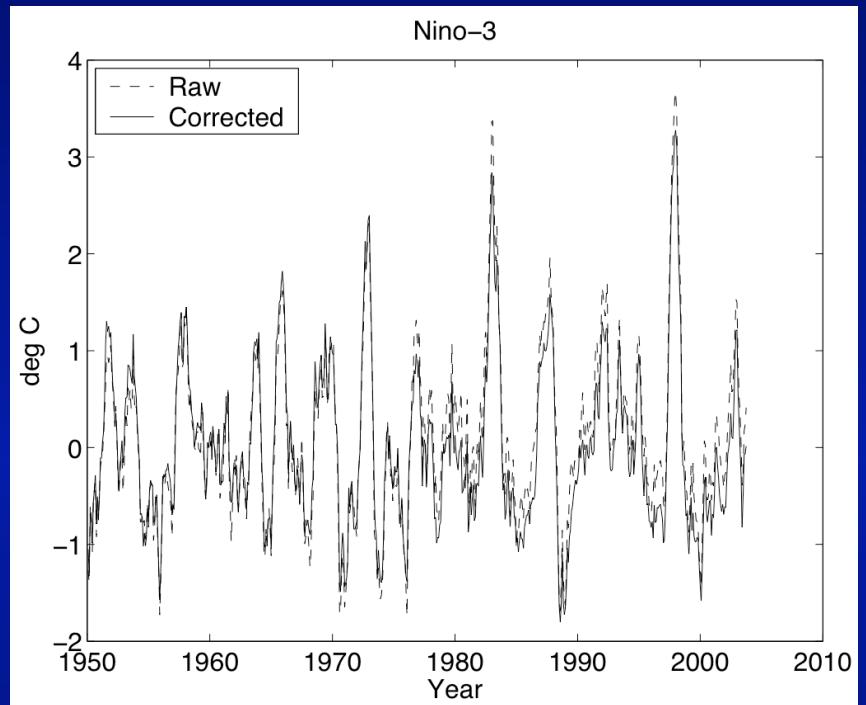
Empirical mode reduct'n (EMR) – II

- The number L of levels is such that each of the last-level residuals (for each channel corresponding to a given response variable) is “white” in time.
- Spatial (cross-channel) correlations of the last-level residuals are retained in subsequent regression-model simulations.
- The number J of PCs is chosen so as to optimize the model’s performance.
- Regularization is used at the main (nonlinear) level of each channel.

ENSO – I

Data:

- Monthly SSTs: 1950–2004,
30 S–60 N, 5x5 grid
(Kaplan *et al.*, 1998)
- 1976–1977 shift removed
- Histogram of SST data is skewed (**warm events** are larger, while **cold events** are more frequent): Nonlinearity important?



ENSO – II

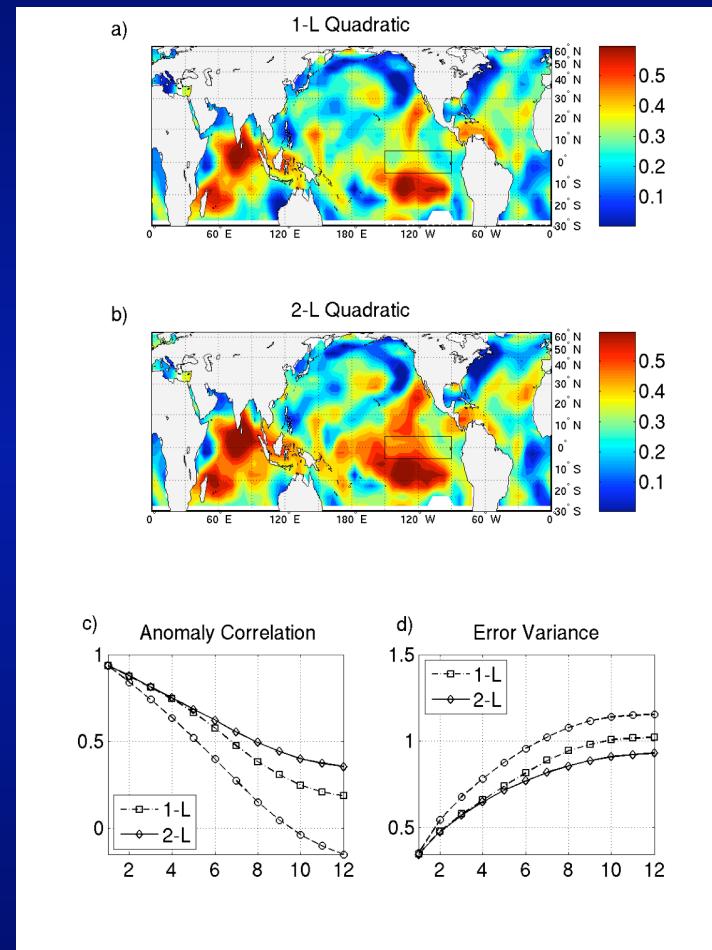
Regression model:

- $J = 20$ variables (EOFs of SST)
- $L = 2$ levels
- Seasonal variations included in the linear part of the main (quadratic) level.

The quadratic model has a slightly smaller RMS error in its extreme-event forecasts

- Competitive skill: Currently a member of a multi-model prediction scheme of the IRI,

see: http://iri.columbia.edu/climate/ENSO/currentinfo/SST_table.html.



ENSO – III

*ENSO development
and non-normal growth of
small perturbations*

(Penland & Sardeshmukh, 1995;
Thompson & Battisti, 2000);

Floquet analysis :

$$\dot{\mathbf{x}} = \mathbf{L}(t)\mathbf{x}$$

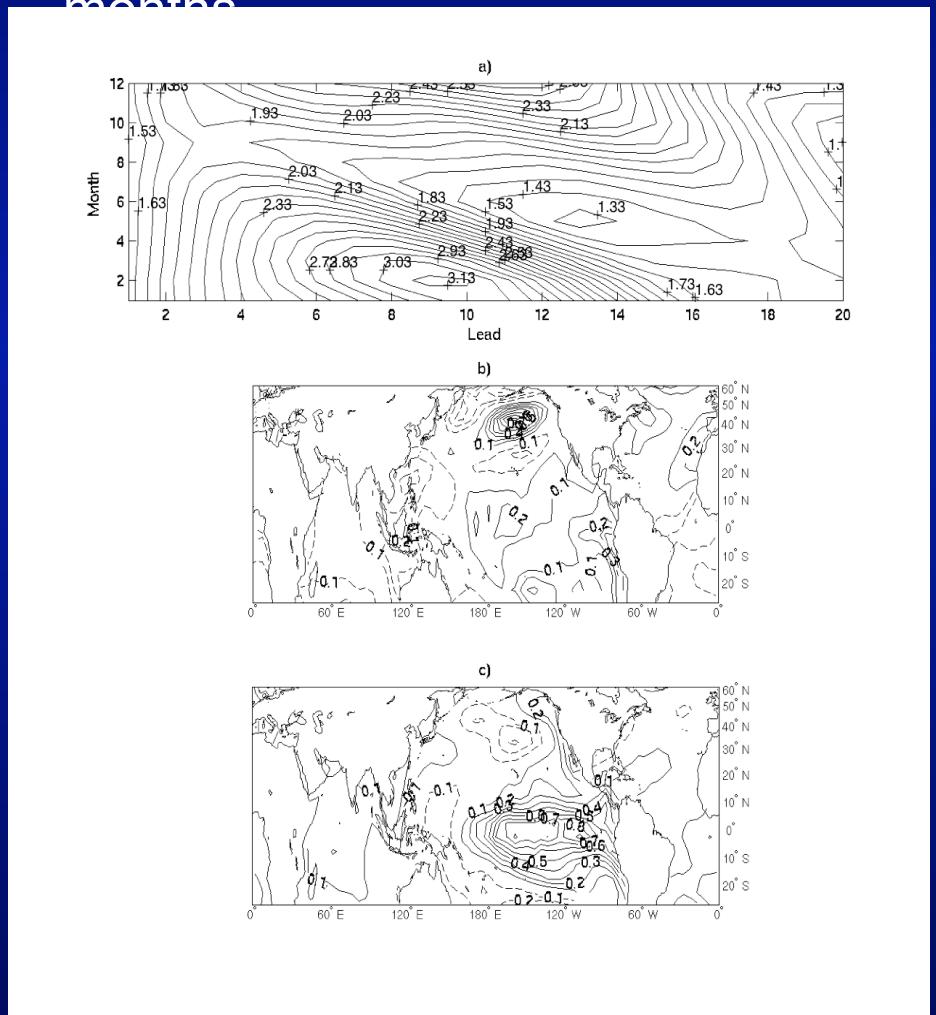
$$\dot{\Phi} = \mathbf{L}(t)\Phi, \quad \Phi(0) = \mathbf{I}$$

$$\Phi(\tau) = \mathbf{U} \cdot \mathbf{S} \cdot \mathbf{V}^T$$

V – optimal initial vectors

U – final pattern at lead τ

- *Maximum growth:*
(b) start in Feb., (c) $\tau = 10$ months



NH LFV in QG3 Model – I

The QG3 model (Marshall and Molteni, JAS, 1993):

- Global QG, T21, 3 levels, with topography; perpetual-winter forcing; ~ 1500 degrees of freedom.
- Reasonably realistic NH climate and LFV:
 - (i) multiple planetary-flow regimes; and
 - (ii) low-frequency oscillations
(submonthly-to-intraseasonal).
- Extensively studied: A popular “numerical-laboratory” tool to test various ideas and techniques for NH LFV.

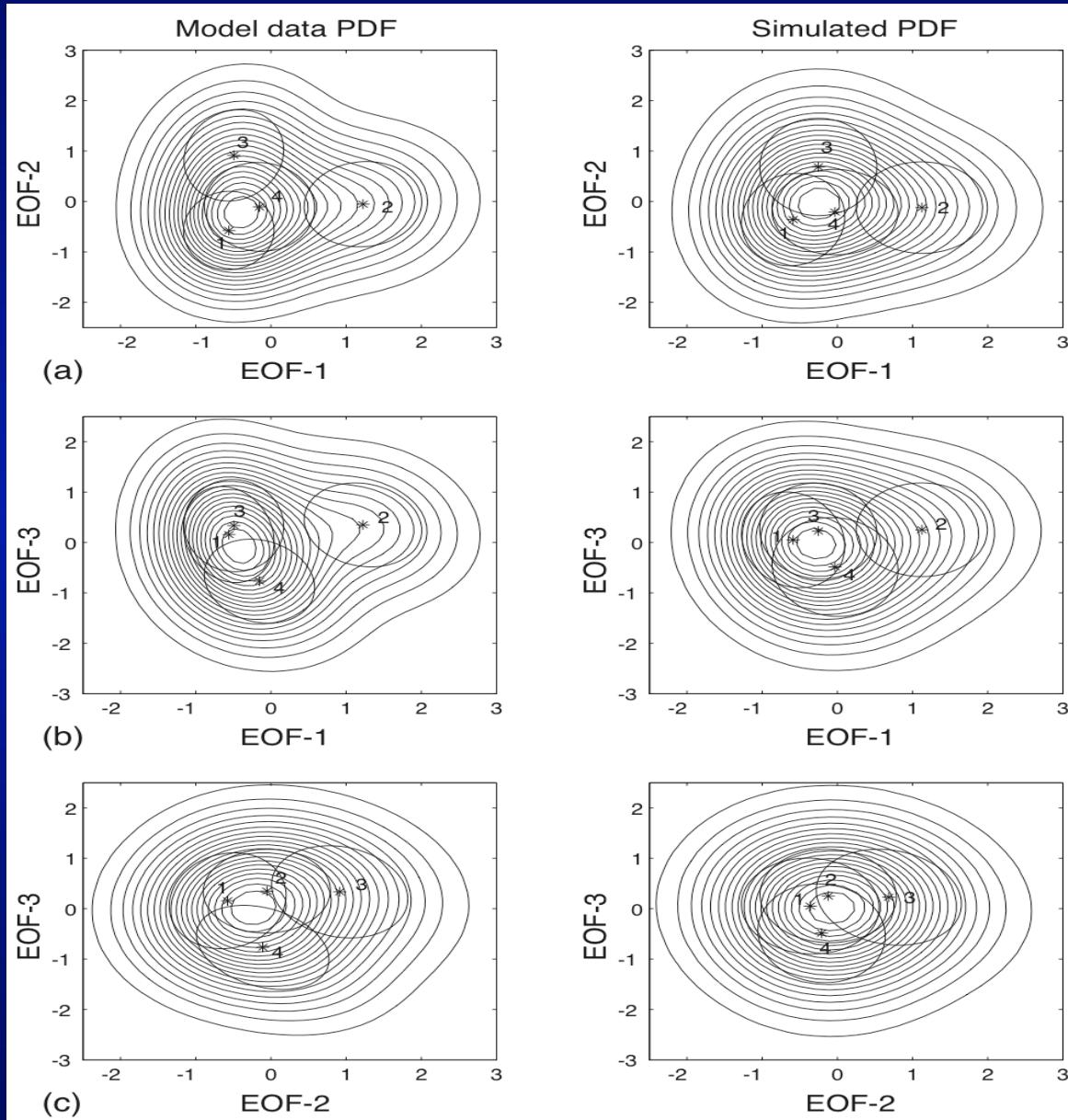
NH LFV in QG3 Model – II

Output: daily streamfunction (ψ) fields (ψ 10⁵ days)

Regression model:

- 15 variables, 3 levels ($L = 3$), quadratic at the main level
- Variables: Leading PCs of the middle-level ψ
- No. of degrees of freedom = 45 (a factor of 40 less than in the QG3 model)
- Number of regression coefficients $P = (15+1+15\cdot16/2+30+45)\cdot15 = 3165 (<< 10^5)$
- Regularization via PLS applied at the main level.

NH LFV in QG3 Model – III



- Our EMR is based on 15 EOFs of the QG3 model and has $L = 3$ regression levels, *i.e.*, a total of 45 predictors (*).
- The EMR approximates the QG3 model's major statistical features (PDFs, spectra, regimes, transition matrices, etc.) strikingly well.

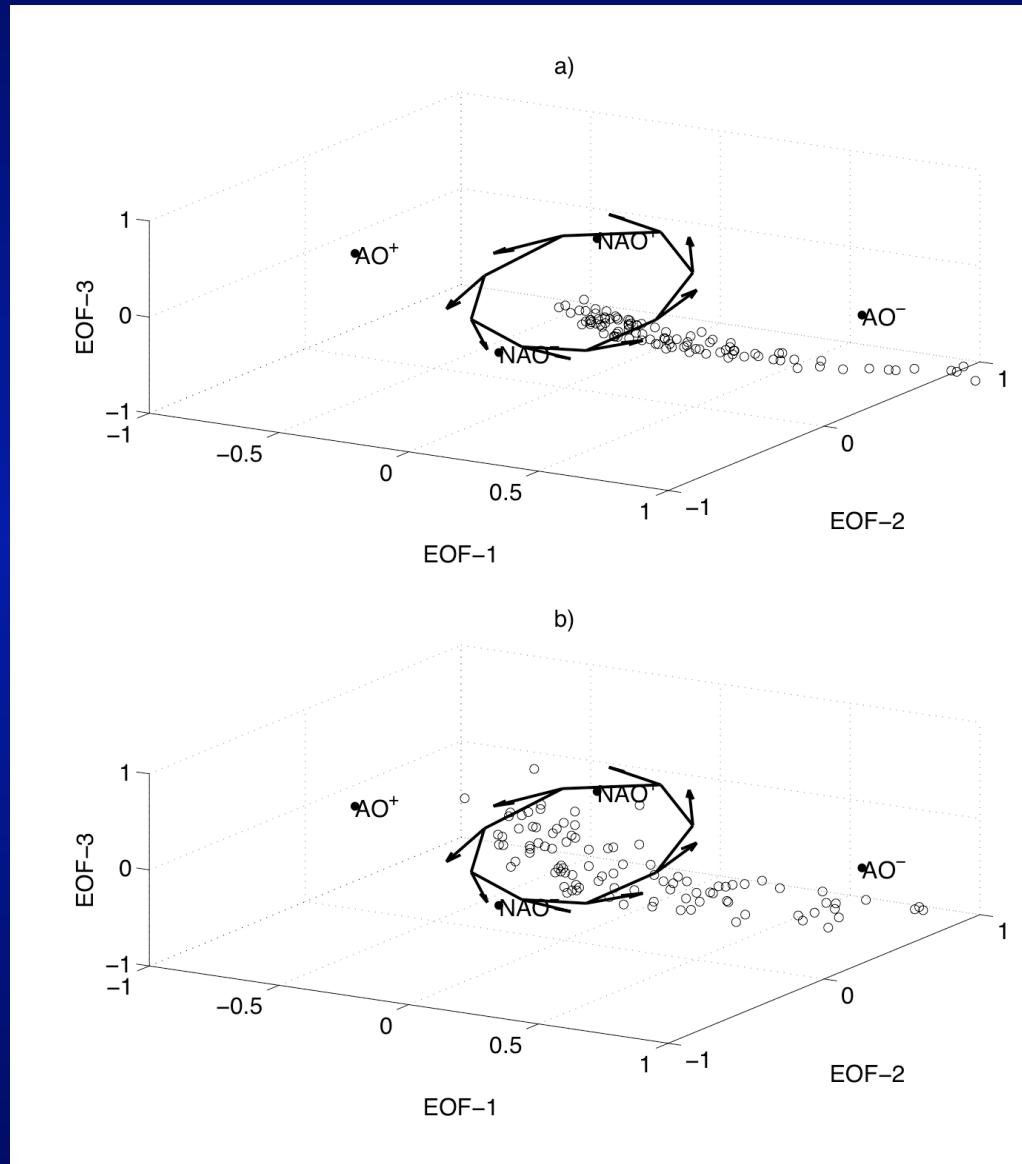
NH LFV in QG3 Model – II

*Quasi-stationary states
of the EMR model's
deterministic component
explain dynamics!*

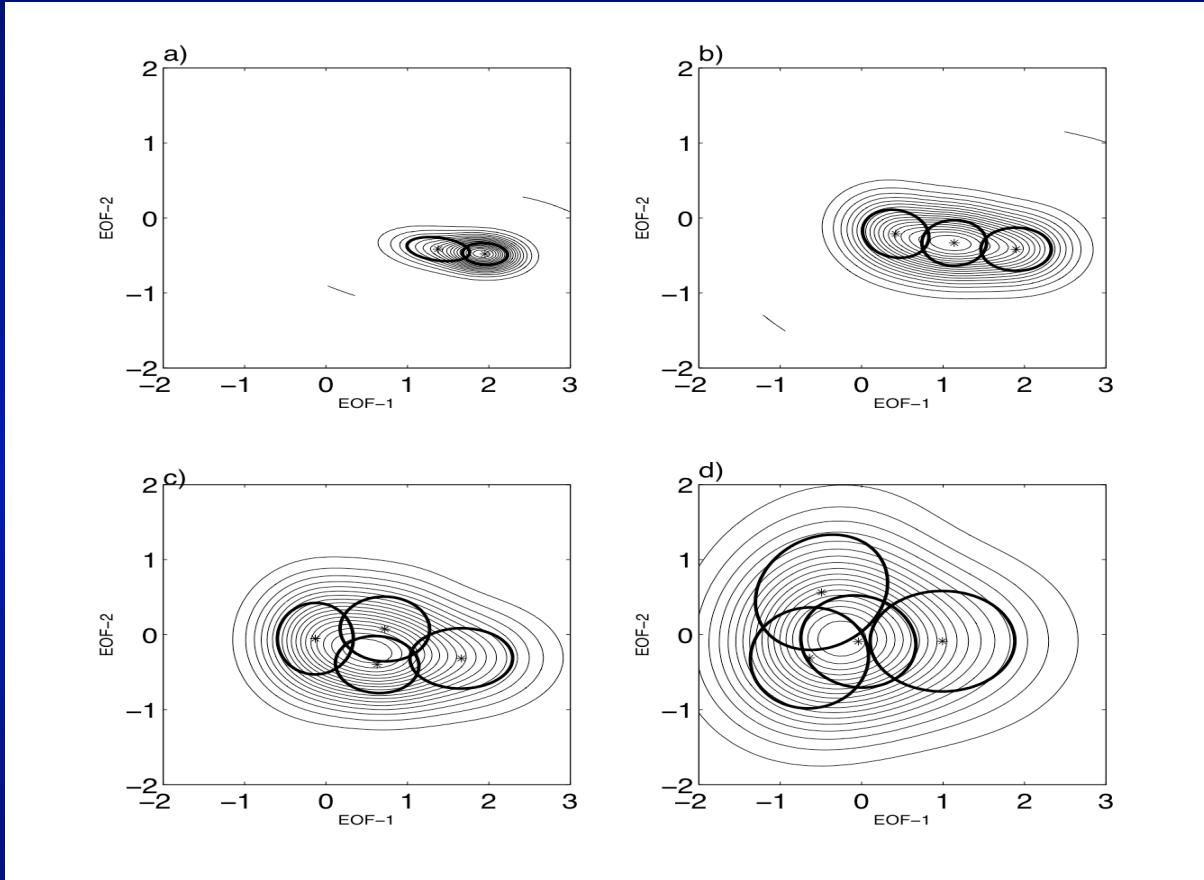
Tendency threshold

- a) $\mathbb{W} = 10^{-6}$; and
- b) $\mathbb{W} = 10^{-5}$.

- The 37-day mode is associated, in the reduced model with the least-damped linear eigenmode.
- AO⁻ is the model's unique steady state.
- Regimes AO⁺, NAO⁻ and NAO⁺ are associated with anomalous slow-down of the 37-day oscillation's trajectory \mathbb{W} nonlinear mechanism.



NH LFV in QG3 Model – III

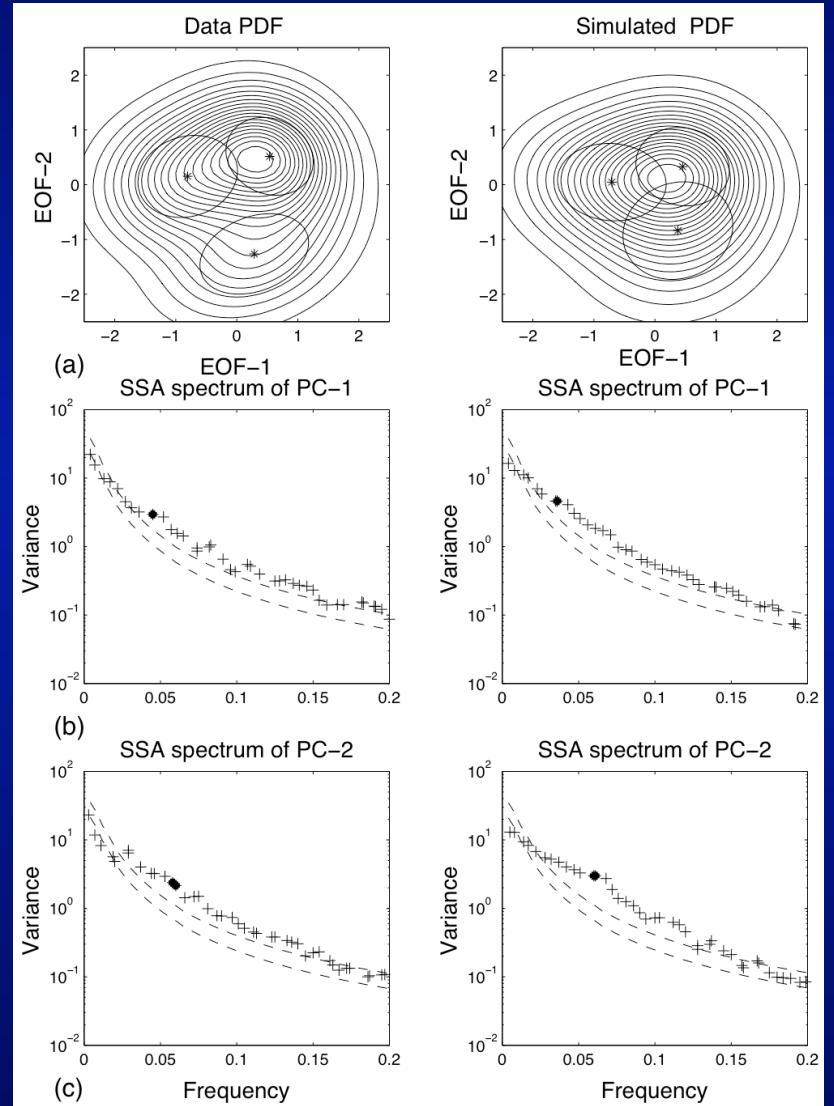


- The additive noise interacts with the nonlinear dynamics to yield the full EMR's (and QG3's) phase-space PDF.

Panels (a)–(d): noise amplitude $\mathbb{W} = 0.2, 0.4, 0.6, 1.0$.

NH LFV – Observed Heights

- 44 years of daily 700-mb-height winter data
- 12-variable, 2-level model works OK, but dynamical operator has unstable directions: “sanity checks” required.



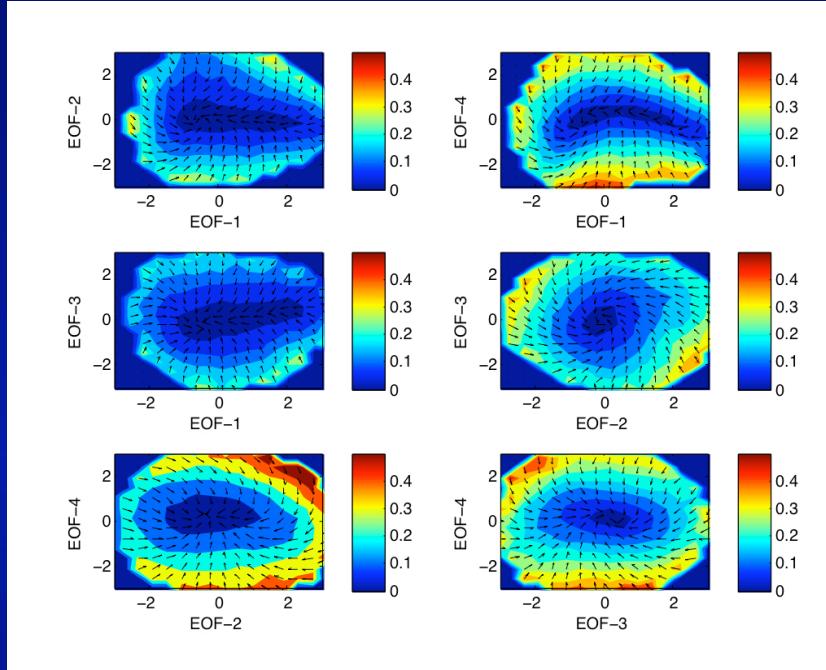
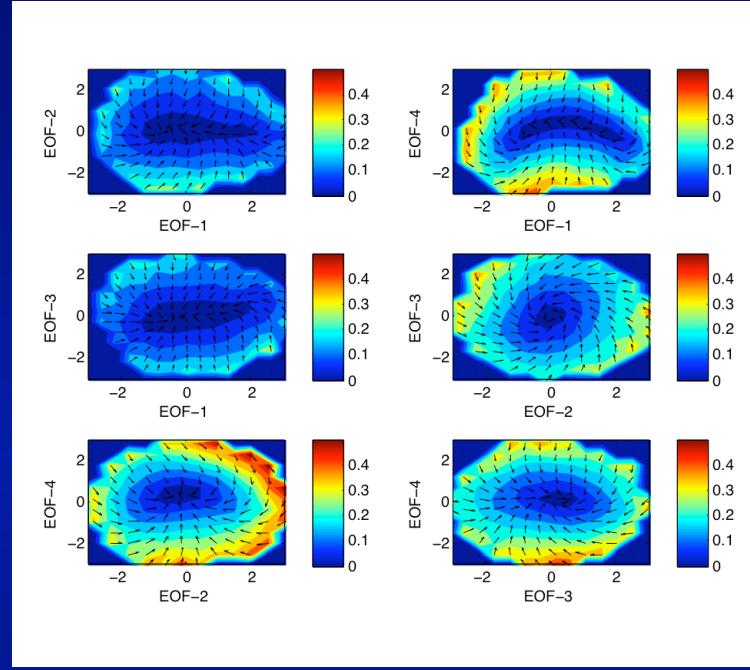
Mean phase space tendencies

- 2-D mean tendencies $\langle (dx_j, dx_k) \rangle = F(x_j, x_k)$ in a given plane of the EOF pair (j, k) have been used to identify distinctive signatures of nonlinear processes in both the intermediate QG3 model (Selten and Branstator, 2004; Franzke et al. 2007) and more detailed GCMs (Branstator and Berner, 2005).
- Relative contributions of "resolved" and "unresolved" modes (EOFs) that may lead to observed deviations from Gaussianity; it has been argued that contribution of "unresolved" modes is important.
- We can estimate mean tendencies from the output of QG3 and EMR simulations.
- Explicit quadratic form of $F(x_j, x_k)$ from EMR allows to study nonlinear contributions of "resolved" and "unresolved" modes.

Mean phase-space tendencies

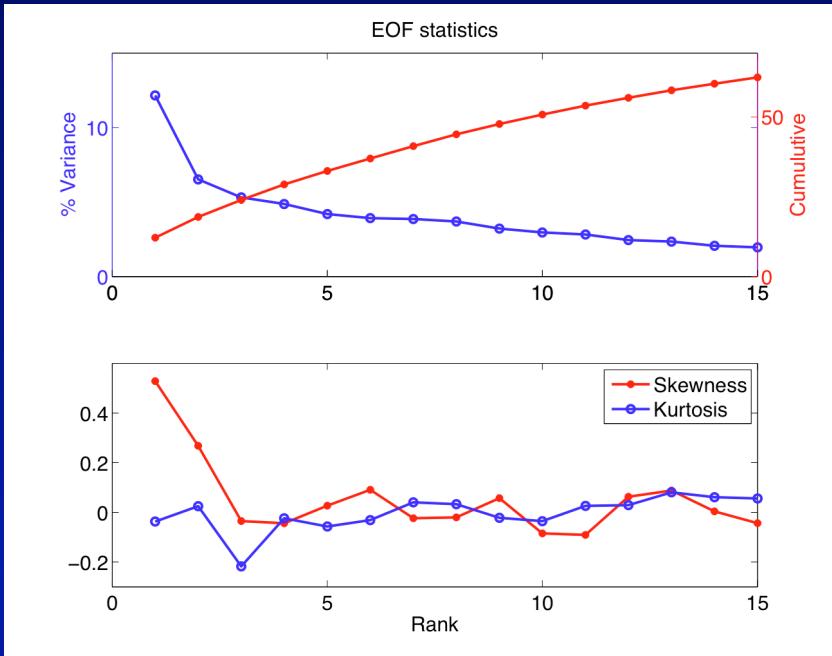
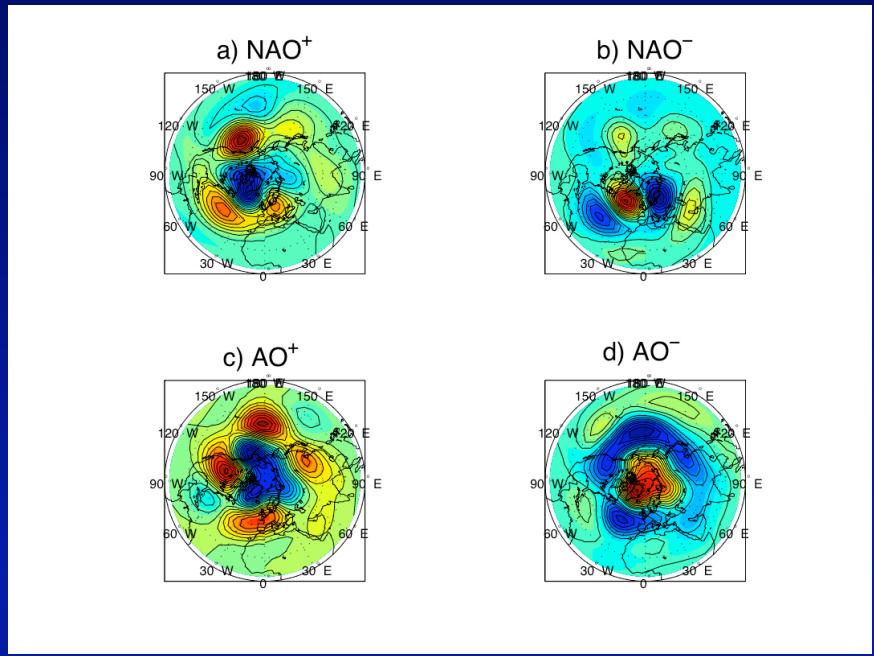
QG3 tendencies

EMR tendencies



- Linear features for EOF pairs (1-3), (2-3) only: antisymmetric for reflections through the origin; constant speed along ellipsoids (Branstator and Berner, 2005).
- Very good agreement between EMR and QG3!

“Resolved” vs. “Unresolved”?



- It depends on assumptions about "signal" and "noise". We consider EOFs x_i ($i \leq 4$) as "resolved" because:
 - these EOFs have the most pronounced deviations from the Gaussianity in terms of skewness and kurtosis.
 - they determine the most interesting dynamical aspects of LFV; linear (intraseasonal oscillations) as well as nonlinear (regimes) (Kondrashov et al. 2004, 2006).

EMR Tendencies budget

$$\Delta x_i^{(n)} = (N_{ijk} x_j^{(n)} x_k^{(n)} + L_{ij} x_j^{(n)} + F_i) \Delta t + r_i^{(n)} \Delta t$$

For a given x_i ($i \leq 4$), we split nonlinear interaction $x_j x_k$ as "resolved" (set Ω of (j, k) ; $j, k \leq 4$):

$$T_R = N_{ijk} x_j x_k - R_i$$

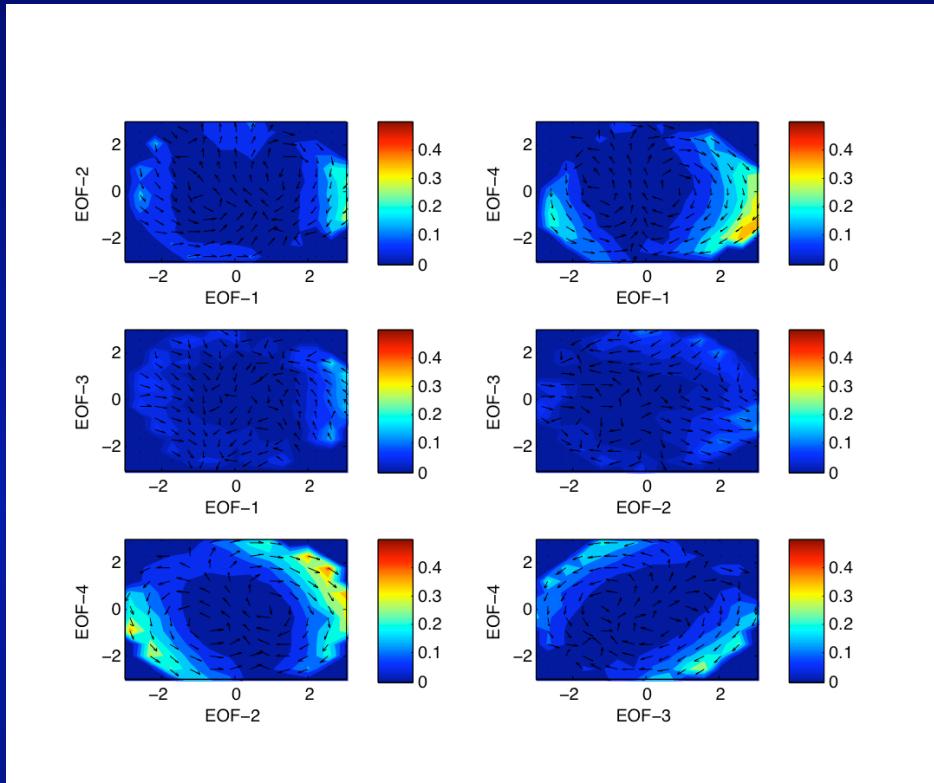
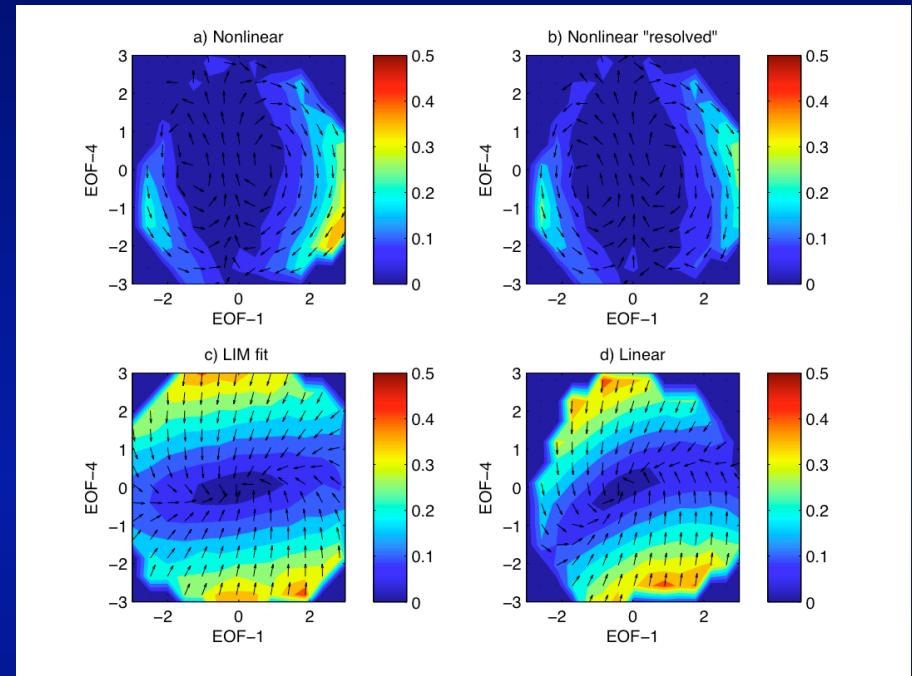
$$R_i = \langle N_{ijk} x_j x_k \rangle$$

and "unresolved" for $(j, k) \notin \Omega$:

$$T_U = N_{ijk} x_j x_k + R_i + F_i$$

Since F_i ensures $\langle dx_i \rangle = 0$: $F_i = -\langle N_{ijk} x_j x_k \rangle \quad \forall j, k$
we have $\langle T_R \rangle = 0$, $\langle T_U \rangle = 0$, and $\langle T_R + T_U \rangle = 0$!

EMR Nonlinear Tendencies



- Pronounced nonlinear double swirls for EOF pairs (1-2), (1-4), (2-4) and (3-4).

- The nonlinear "double-swirl" feature is mostly due to the "resolved" nonlinear interactions, while the effects of the "unresolved" modes are small!!

Concluding Remarks – I

- The generalized least-squares approach is well suited to derive nonlinear, reduced models (EMR models) of geophysical data sets; regularization techniques such as PCR and PLS are important ingredients to make it work.
- Easy add-ons, such as seasonal cycle (for ENSO, etc.).
- The dynamic analysis of EMR models provides conceptual insight into the mechanisms of the observed statistics.

Concluding Remarks – II

Possible pitfalls:

- The EMR models are maps: need to have an idea about (time & space) scales in the system and sample accordingly.
- Our EMRs are parametric: functional form is pre-specified, but it can be optimized within a given class of models.
- Choice of predictors is subjective, to some extent, but their number can be optimized.
- Quadratic invariants are not preserved (or guaranteed) – spurious nonlinear instabilities may arise.

References

Kravtsov, S., D. Kondrashov, and M. Ghil, 2005:
Multilevel regression modeling of nonlinear processes:
Derivation and applications to climatic variability.
J. Climate, **18**, 4404–4424.

Kondrashov, D., S. Kravtsov, A. W. Robertson, and M. Ghil, 2005:
A hierarchy of data-based ENSO models.
J. Climate, **18**, 4425–4444.

Kondrashov, D., S. Kravtsov, and M. Ghil, 2006:
Empirical mode reduction in a model of extratropical
low-frequency variability. *J. Atmos. Sci.*, **63**, 1859-1877.