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Motivation

Sometimes we have data but no models: empirical approach.
We want models that are as simple as possible, but not any simpler.

Criteria for a good data-derived model

Capture interesting dynamics: regimes, nonlinear oscillations.
- Intermediate-order deterministic dynamics easy to analyze anallitycaly.
Good noise estimates.




Linear Inverse Models (LIM)

Penland, C., 1996: A stochastic model of Indo-Pacific sea-surface temperature

anomalies. Physica D, 98, 534-558.
Penland, C., and L. Matrosova, 1998: Prediction of tropical Atlantic sea-surface

temperatures using linear inverse modeling. J. Climate, 11, 483—496.

Linear inverse model (LIM)

« We aim to use data in order to estimate the two matrices, B
and Q, of the stochastic linear model:

dX = BX - dt + d&(t). (1)
where B is the (constant and stable) dynamics matrix, and Q is
the lag-zero covariance of the vector white-noise process dé(f).
« More precisely, the two matrices B and Q are related by a
fluctuation-dissipation relation:

BC(0) + C(0)Bf + Q@ = 0. (2)
where C(r) = E{X(f + ~)X({)} is the lag-covariance matrix of
the process X(t), and (-)! indicates the transpose.

« One then proceeds to estimate the Green’s function
G(r) = exp(rB) at a given lag = from the sample C(r) by
G(7g) = C(7p)C(0).
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Linear inverse models (LIM) are good least-square fits to data, but don’t
capture all the (nonlinear) processes of interest.




Nonlinear reduced models (MTV)
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Monlinear stochastic model (MTV)-

« Let z be a vector decomposed into a slow (“climate”) and a
fast (“weather") vector of variables, z = (X, V).

We model x deterministically and y stochastically, via the
following quadratic nonlinear dynamlcs

ax
o Ly1X + Lizy + Bl (%, %) + Blo(x.y) + B (., ¥).

d

d_r = LpyX + Lol + By (X, X) + Bi,(x, ¥) + BE(Y. ¥).

« In stochastic modeling, the explicit nonlinear self-interaction
for the variable y, i.e. B%:(y,Y). is represented by a linear
stochastic operator:

r ;
BE(y,y) ~ — 2y +—=W(D),

where I and o are matrices and W(f) is a vector-valued
white-noise.

*MTV model coefficients are predicted by the theory.

Monlinear stochastic model (MTV)-I

« The parameter = measures the ratio of the correlation time of
the weather and the climate variables, respectively,
and = <= 1 corresponds to this ratio being very small.
« UUsing the scaling ¢ — =t, we derive the stochastic climate
model:

d

1
o = Z(Linx+ Lizy + B (6 X) + BL(x,Y),

a 1 r o
o = =(LarX + Loy + B (X, X) + B(X,¥)) — =¥ + ZW(0).
« In practice, the climate variables are determined by a variety
of procedures, including leading-order empirical orthogona
functions (EOFs), zonal averaging in space, low-pass and
high-pass time filtering, or a combination of these procedures.
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*Relies on scale separation between the resolved (slow) and unresolved (fast) modes

*Their estimation requires very long libraries of the full model’s evolution.
-Difficult to separate between the slow and fast dynamics (MTV).




Key ideas

IR X — Lx + N(x).

* Discretized, quadratic:
dx, = (x'Ax + b"x + ) dr + dr'”;

* Multi-level modeling of red noise:
dx,= (x'Ax + b"x + ) dr + " dt,

0 B 0
ar” = b\V[x, ¥ dr + " dt,

[

- 0 2
x, r', v dr + P dt,

L
¥ dt + dri-TY:




Nomenclature

Response variables:

{y(M} (1 <n < N)
Predictor variables:

{z(M} (1 <n<N)

* Each IS normally distributed about

* Each is known exactly. Parameter set {a,}:

— known dependence
of fon {x”} and {a,}.

SISOV o, (1 < p < P)




LIM extension #1

* Do a least-square fit to a nonlinear function of the data:

J response variables:

Predictor variables (example — quadratic polynomial
of J original predictors):

J J
Ui = ao,i + > ajixi+ D D Gk T

j=1 j=1k>j

Note: Need to find many more regression coefficients than
for LIM; in the example above P = J + J(J+1)/2 + 1 = O(J?).




Regularization

* Caveat: If the number P of regression parameters is
comparable to (i.e., it is not much smaller than) the
number of data points, then the least-squares problem may
become ill-posed and lead to unstable results (overfitting) ==>
One needs to transform the predictor variables to reqularize
the regression procedure.

* Regularization involves rotated predictor variables:

the orthogonal transformation looks for an “optimal”
linear combination of variables.

* “Optimal” = (i) rotated predictors are nearly uncorrelated; and
(i) they are maximally correlated with the response.

* Canned packages available.




LIM extension #2

* Motivation: Serial correlations in the residual.

Main level, /= 0: (@IS az 0%+ 7Q

* lwjr, — Gaussian random deviate with appropriate variance

* |f we suppress the dependence on xinlevels/ =1, 2,... L,
then the model above is formally identical to an ARMA model.




Empirical Orthogonal Functions (EOFs)

We want models that are as simple as possible, but not any simpler: use
leading empirical orthogonal functions for data compression and capture

as much as possible of the useful (predictable) variance.
Decompose a spatio-temporal data set D(¢,s)(t=1,...,N; s=1...,M)
by using principal components (PCs) — x,(f) and

empirical orthogonal functions (EOFs) — ¢,(s): diagonalize the
M x M spatial covariance matrix C of the field of interest.

C { (D— < D =)"(D
CA\, = N;e;.; = (D— == D =)e

EOFs are optimal patterns to capture most of the variance.
Assumption of robust EOFs.

EOFs are statistical features, but may describe some dynamical (physical)
mode(s).




Empirical mode reduction (EMR)-

* Multiple predictors: Construct the reduced model
using J leading PCs of the field(s) of interest.

* Response variables: one-step time differences of predictors;
step = sampling interval = {¥jt.

* Each response variable is fitted by an independent

multi-level model:
The main level /= 0 is polynomial in the predictors;
all the other levels are linear.




Empirical mode reduct’'n (EMR) — II

* The number L of levels is such that each of the

last-level residuals (for each channel corresponding
to a given response variable) is “white” in time.

* Spatial (cross-channel) correlations of the last-level

residuals are retained in subsequent
regression-model simulations.

* The number J of PCs is chosen so as to optimize the
model’s performance.

* Regularization is used at the main (nonlinear) level
of each channel.




Data:

* Monthly SSTs: 1950-2004,
30 S—60 N, 5x5 grid
(Kaplan et al., 1998)

« 1976—-1977 shift removed

1970 1980 1990 2000 2010
Year

* Histogram of SST data is skewed (warm events are larger, while

cold events are more frequent): Nonlinearity important?




ENSO — |l

Regression model.:
e J= 20 variables (EOFs of SST)
[ =2levels
* Seasonal variations included

In the linear part of the main

(quadratic) level.

The quadratic model has a
slightly smaller RMS error in its
extreme-event forecasts

e Competitive skill: Currently

> y
2 4 6 8 10 12 2 4 6 8 10 12

a member of a multi-model
prediction scheme of the IR,
see: http://iri.columbia.edu/climate/ENSO/currentinfo/SST _table.html.




ENSO — Il

* Maximum growth:

ENSO development
and non-normal growth of
small perturbations

(Penland & Sardeshmukh, 1995;
Thompson & Battisti, 2000);

NN N SN\

Floquet analysis SRR

x = L(¢)x
d=L1H®, ®0)=I
d(r)=U-S-V'

V — optimal initial vectors
U — final pattern at lead [v]




NH LFV in QG3 Model — |
The QG3 model (Marshall and Molteni, JAS, 1993):

* Global QG, T21, 3 levels, with topography;
perpetual-winter forcing; ~1500 degrees of freedom.

* Reasonably realistic NH climate and LFV:

(i) multiple planetary-flow regimes; and
(ii) low-frequency oscillations
(submonthly-to-intraseasonal).

* Extensively studied: A popular “numerical-laboratory” tool
to test various ideas and techniques for NH LFV.




NH LFV in QG3 Model — I

Output: daily streamfunction ({¥]) fields ({¥] 10° days)

Regression model.

* 15 variables, 3 levels (L = 3), quadratic at the main level

* Variables: Leading PCs of the middle-level {¥

* No. of degrees of freedom = 45 (a factor of 40 less than
in the QG3 model)

* Number of regression coefficients P =
(15+1+15+16/2+30+45)*15 = 3165 (<< 10°)

* Regularization via PLS applied at the main level.
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NH LFV in QG3 Model — I

Quasi-stationary states
of the EMR model’s

deterministic component
explain dynamics!

Tendency threshold
a) =10-%; and

*The 37-day mode is associated, in
the reduced model with the least-

damped linear eigenmode.

*AO- is the model’s unique steady
state.

* Regimes AO*, NAO- and NAO* are
associated with anomalous slow-
down of the 37-day oscillation’s

trajectory [¥] nonlinear mechanism.




NH LFV in QG3 Model — I

22 2P

*The additive noise interacts with the nonlinear dynamics to yield

the full EMR’s (and QG3'’s) phase-space PDF.
Panels (a)—(d): noise amplitude [¥] = 0.2, 0.4, 0.6, 1.0.




NH LFV — Observed Heights

Data PDF Simulated PDF

W

* 44 years of daily / (=@ |
700-mb-height winter data |

-1 0
EOF-1
SSA spectrum of PC-1

* 12-variable, 2-level model
works OK, but dynamical

operator has unstable _ N N
directions: “sanity checks” (— (.
required.

Variance
Variance

0.1 0.15

Variance
Variance

0.05 0.1 0.15 . ! 0.1
Frequency Frequency




Mean phase space tendencies

* 2-D mean tendencies <(dXx;dx,)>=F(x;x,) in a given plane of
the EOF pair (j, k) have been used to identify distinctive

signatures of nonlinear processes in both the intermediate
QG3 model (Selten and Branstator, 2004; Franzke et al. 2007)
and more detailed GCMs (Branstator and Berner, 2005).

 Relative contributions of "resolved” and " 'modes
(EOFs) that may lead to observed deviations from Gaussianity; it
has been argued that contribution of "'modes is
important.

*\We can estimate mean tendencies from the output of QG3 and
EMR simulations.

* Explicit quadratic form of F(x;x,) from EMR allows to study
nonlinear contributions of "resolved” and ” modes.
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"Resolved” vs. “Unresolved”?

EOF statistics

—_

% Variance

1

—e— Skewness
—e—Kurtosis |

* It depends on assumptions about "signal” and
consider EOFs x; (i < 4) as "resolved” because:

- these EOFs have the most pronounced deviations from the
Gaussianity in terms of skewness and kurtosis.

- they determine the most interesting dynamical aspects of LFV,;

linear (intraseasonal oscillations) as well as nonlinear (regimes)
(Kondrashov et al. 2004, 2006).




EMR Tendencies budget

For a given x; (i=4), we split nonlinear interaction xx, as
"resolved” (set Q of (j,k); j,k <4):

Tr= Ny x,x -R;
R;= < Nj X; X
and” " for (j,k) ¢ Q:

Ty=Nj X, X +R; + F,
Since f; ensures <dx;>=0: F;=- <Ny x,x,> V jk
we have <Tp,>=0, <T,>=0, and < +T > = (!




EMR Nonlinear Tendencies

« Pronounced nonlinear *The nonlinear "double-swirl”
double swirls for EOF feature is mostly due to the

ai () AN "resolved” nonlinear interactions,
gngs(g(_4) ) H1-4).(28) while the effects of the
| modes are small!!




Concluding Remarks — |

* The generalized least-squares approach is well suited to

derive nonlinear, reduced models (EMR models) of
geophysical data sets; regularization techniques such as
PCR and PLS are important ingredients to make it work.

* Easy add-ons, such as seasonal cycle (for ENSO, etc.).

* The dynamic analysis of EMR models provides conceptual
insight into the mechanisms of the observed statistics.




Concluding Remarks — |

Possible pitfalls:

* The EMR models are maps: need to have an idea about
(time & space) scales in the system and sample accordingly.

* Our EMRs are parametric: functional form is pre-specified,
but it can be optimized within a given class of models.

* Choice of predictors is subjective, to some extent, but their
number can be optimized.

* Quadratic invariants are not preserved (or guaranteed) —
spurious nonlinear instabilities may arise.
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