Dynamics of Atmospheres and Oceans, 13 (1989) 171-218 171
Elsevier Science Publishers B.V., Amsterdam — Printed in The Netherlands

METEOROLOGICAL DATA ASSIMILATION
FOR OCEANOGRAPHERS.
PART I: DESCRIPTION AND THEORETICAL FRAMEWORK *

M. GHIL

Department of Atmospheric Sciences and Institute of Geophysics and Planetary Physics,
University of California, Los Angeles, CA 90024-1565 (U.S.A.)

(Received March 1, 1988; revised August 10, 1988; accepted September 9, 1988)

ABSTRACT

Ghil, M., 1989. Meteorological data assimilation for oceanographers. Part I: Description and
theoretical framework. Dyn. Atmos. Oceans, 13: 171-218.

The main theme of this article is the central role that dynamics plays in estimating the
state of the atmosphere and of the ocean from incomplete and noisy data. The evolution of
meteorological data usage in estimation and prediction is reviewed, from manual synoptic
analysis through objective analysis to four-dimensional assimilation into a prediction model.
Four-dimensional data assimilation tries to balance properly the roles of dynamical and
observational information. Sequential estimation is presented as the proper framework for
understanding this balance, and the Kalman filter as the optimal procedure for data
assimilation.

The optimal filter computes forecast error covariances of a given atmospheric or oceanic
model exactly, and hence data assimilation should be closely connected with predictability
studies. A simple barotropic model of geophysical flow is used to illustrate the basic concepts.
This model’s results with simulated data are compared with the accumulated experience from
full-scale meteorological models, assimilating real data.

The so-called initialization problem of eliminating fast, inertia-gravity waves in meteoro-
logical data assimilation is described within the context of sequential estimation. Improve-
ments to operational schemes of data assimilation in current meteorological use are sug-
gested, with a view to ocean applications.

1. INTRODUCTION AND MOTIVATION

The current and expected explosion in remotely sensed oceanographic
data is ushering in a new age of physical oceanography. In this new age,

* Part Il is in preparation.
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sophisticated theories about ocean circulation, developed up till now from
very little field information, will be tested against the incoming data; new
theories will be developed to explain the varied phenomena transpiring from
the more plentiful data; and increased understanding of ocean circulation
will be translated into prediction.

The data revolution knocking at the door will bring closer the daily
practice of physical oceanography to that of dynamic meteorology. Even so,
the number of oceanographic data to become available in the mid-1990s is
expected to be smaller than that currently available in meteorology by a
factor of ten, roughly speaking, after allowing for the difference in spatial
and temporal scales. Moreover, oceanic data are and will be even less
uniformly distributed than atmospheric data, with a preponderence of data
at the surface and in the dynamically interesting parts of the world ocean,
such as western boundary currents. A detailed comparison between the two
sister disciplines with respect to data availability is given in the Appendix.

This comparison, well known in its essentials to the reader, indicates that
current and expected data in oceanography fall far short of complete,
uniform and accurate coverage of the mass and velocity fields throughout
the world ocean’s width and depth. To compensate for these shortcomings in
the data actually observed, it is necessary to call upon the accumulated
experience of past data, and the theoretical knowledge distilled from this
experience, a knowledge best incorporated into numerical models of oceanic
flow.

As in meteorology, flow models can be used to assimilate the data,
creating a dynamically consistent, complete and accurate ‘movie’ of the
oceans in motion. One key problem is how to determine variables not
directly observed, such as the velocity components, from the observed
variables, such as surface height or wind stress. The other key problem is
how to use information in one part of the ocean, at the surface or in a
western boundary current, in order to infer the state of the other parts, at
depth and throughout a subtropical gyre, say.

The answers to these two problems lie, as we shall see, in the dynamical
coupling between variables, for the one, and the advection of information
with the flow, for the other. This is the central role that dynamics plays in
estimating the state of the ocean from incomplete data. The other side of the
coin is that numerical models are not and never will be perfectly accurate
representations of the ocean’s large-scale motions. Both models and data
have errors; hence the need to properly balance dynamical and observa-
tional information.

Meteorological data usage can thus provide some guidance to oceanogra-
phers, first in what to do with their new data, and then in how to do it better
than the meteorologists, who are still much richer in data. Hence, the
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purpose of this article is twofold: (1) to provide an introduction to the
current operational practice of data assimilation in numerical weather
prediction (NWP), and how this practice was arrived at; and (ii) to outline a
theoretical framework for the evaluation of data assimilation methods, and
for the development of better methods. The two topics will not be treated in
complete separation from each other, but rather as intertwined threads.

In section 2, the history of data usage in meteorology is outlined, and a
number of methods for combining data with models are briefly mentioned.
In section 3, the mathematical framework of estimation theory is presented,
with an emphasis on sequential estimation as conceptually closest to the
spirit of meteorological data assimilation. More general aspects of estima-
tion, and connections with control theory, are postponed for Part I1.

In section 4, sequential estimation is illustrated for a one-dimensional
(1-D) shallow-water model. In section 5, the optimal filter given by sequen-
tial estimation theory, the Kalman filter, is modified to account for the two
types of waves present in primitive-equation (PE) models, fast and slow, and
to eliminate the fast, undesirable modes. This paper concludes with brief
comments on practical aspects of operational data assimilation, not covered
by the theoretical framework presented here.

Part 11 will be published soon. It starts with a quick review of the
theoretical results so far. In its section 2, so-called ‘optimal interpolation’
(OI), the method currently in widest use in NWP, is shown to be a particular
suboptimal filter within the broader framework of sequential estimation, and
ways to improve it are proposed. In section 3, computational considerations
are raised, and an application to a two-dimensional (2-D) shallow-water
model is reviewed, with operation counts.

The question of adaptive determination of observational error is addre-
ssed in section 4, and the determination of model error is shown to be
related to the predictability question. Sequential estimation for non-linear
flow equations is discussed in section 5. Conclusions for the upcoming era of
oceanographic data assimilation follow in section 6 of Part II.

2. DATA ANALYSIS AND DATA ASSIMILATION IN METEOROLOGY

Plentiful data on a routine basis are expensive to acquire, in both
meteorology and oceanography, and for the price of these data society is
entitled to useful as well as interesting information. Useful information is
not limited to the climatological or current state of the atmosphere or the
ocean, but extends to a prediction of their future state. A qualitative
understanding of the geofluid is thus necessary but not sufficient for our
purposes, and a quantitative estimate of its state in the past and present, as
well as quantitative prediction of future states, is required. The estimate of
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the present state is a prerequisite for future prediction, and the accuracy of
past prediction is essential for an accurate estimate of the present.

How does the estimation of the present proceed in meteorology? A good
starting point for an answer is Wiener’s (1956) article on prediction and
dynamics. At the time of his writing, meteorology, like econometrics, could
still be considered a semi-exact science, as opposed to the allegedly exact
science of celestial mechanics (Horton et al., 1983). Dynamical processes in
the atmosphere were still poorly known, while observations were sparse in
space and time as well as inaccurate.

Relying theoretically on the hope for the system’s ergodicity and
stationarity, and therewith on certain related theorems of Birkhoff and von
Neumann, Wiener argued that the best approach to atmospheric estimation
and prediction was statistical. In practice, this meant ignoring any quantita-
tive dynamical knowledge of system behavior, requiring instead a complete
knowledge of the system’s past history and using the Wiener—Hopf filter to
process this infinite but inaccurate information into yielding an estimate of
present and future (Wiener, 1949).

During roughly the same period, synoptic meteorologists were actually
producing charts of atmospheric fields at present and future times guided by
tacit principles similar to those explicitly formulated by Wiener. The main
tool was smooth interpolation and extrapolation of observations in space
and time. Still, rudimentary but quantitative dynamical knowledge was
incorporated into these estimates of atmospheric states, to wit, the geo-
strophic relation between winds and heights, and the advection of large-scale
features by the prevailing winds. Some analogies with the state of upper
ocean dynamics just a short while ago are already emerging from this
description.

The first step into the present period of estimation in meteorology was
objective analysis, which replaced manual, graphic interpolation of observa-
tions by automated, mathematical methods, such as two-dimensional (2-D)
polynomial interpolation (Panofsky, 1949). Not surprisingly, this step was
largely motivated by the use of then rapidly improving knowledge of
atmospheric dynamics to produce numerical weather forecasts (Charney et
al., 1950). The word “analysis’ is derived in this context from the traditional
practice of identifying the result of the synoptician’s analysis of the data, a
result plotted manually as a chart or contour map, with the analysis process
itself.

The main ideas underlying objective analysis were statistical (Eliassen,
1954; Gandin, 1963; Phillips, 1976). Observations are considered to sample
a random field, with a given spatial covariance structure which is prede-
termined and stationary in time. This generalizes, in fact, the ideas of
Wiener (1956) from a finite-dimensional system governed by ordinary dif-
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ferential equations (ODEs) to an infinite-dimensional one governed by the
partial differential equations (PDEs) of geophysical fluid dynamucs (GFD).
In practice, these statistical ideas appeared too complicated and computa-
tionally expensive at the time to be adopted, as they stood, into the fledgling
NWP process. Instead, various short cuts, such as the successive-correction
method (SCM) were implemented in the operational routine of weather
bureaus (Cressman, 1959).

Two related developments led to the next step, in which the connection
between statistical interpolation, in the broadest sense, on the one hand, and
dynamics, on the other, became apparent and started to be used systemati-
cally. One development was the increasingly accurate nature of numerical
weather forecasts; the other was the advent of time-continuous, space-borne
observing systems. Together, they produced the concept of four-dimensional
(4-D) space—time continuous data assimilation in which a model forecast of
atmospheric fields is sequentially updated with incoming observations
(Charney et al., 1969; Smagorinsky et al., 1970; Rutherford, 1972). Here the
model carries forward in time the knowledge of a finite number of past
observations, subject to the appropriate dynamics, to be blended with the
latest observations.

The design of the Global Atmospheric Research Program (GARP) in the
late 1960s (Charney et al., 1966) raised for the first time in GFD the
question of trade-offs between observed and unobserved variables, on the
one hand, and between sampling density in space and time, on the other. As
we shall see in the subsequent sections, and in Part II, such questions can be
best formulated as observability questions about the governing equations
with respect to a proposed observing system. These are precisely the ques-
tions that also need to be addressed by the presently contemplated global
programs in oceanography.

Data Window

o

v

Forecast

Fig. 1. Operational cycle of a weather service which combines the forecasting and data
assimilation processes.
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Combining the 4-D assimilation of the new satellite, aircraft and drifting
buoy data with the usual objective analysis of the earlier, conventional data
from radiosondes, ships and land stations (see Fig. A1) led to an interesting
realization. In fact, NWP operations had, of necessity, combined dynamics
with observations all along in determining the state of the atmosphere at all
times, and in particular at those times from which forecasts had to be issued.
This 1s illustrated in Fig. 1.

Any weather bureau carries out two processes in parallel: one is the
numerical forecast, from a particular moment in time, or epoch, which we
shall call initial time; the other is the 4-D assimilation of incoming data in
order to estimate as well as possible the state of the atmosphere at the next
epoch from which a forecast has to be issued. The process illustrated in the
figure is intermittent updating, in which all data within a certain interval, or
window, are used together at the same epoch to update the state of the
system as forecast by the NWP model (Bengtsson, 1975).

Forecasts are typically started at so-called synoptic times, 00 GMT
(Greenwich Mean Time) and 1200 GMT, in which case a 12-h assimilation
cycle with +6-h windows is used. The subsynoptic times 0600 GMT and
1800 GMT also intervene when using a 6-h cycle with + 3-h windows. At
analysis or update times the numerical forecast is first verified against the
new data, then it is combined or blended with them, ie., the data are
assimilated into the model, and finally a new forecast is issued from the
newly estimated state of the atmosphere.

The new estimate is clearly based on the past observations, as carried
forward in time by the model, and on the current observations. Each
forecast has to extend at least up to the next update time, but certain
forecasts, issued at selected epochs, e.g., every 24 h, can extend beyond it,
for 24 h, 48 h, 72 h or even 10 days.

The intermittent updating process described so far was entirely ap-
propriate as long as most data where taken, by international agreement, at
the same time, in order to provide a ‘synopsis’ of the global weather, hence
synoptic times and synoptic maps. With the advent of satellite data, time-
continuous data assimilation, i.e., in practice at every model time step,
became possible (Ghil et al., 1979).

In any case, considerable interest developed throughout the 1970s in
objective analysis and data assimilation methods, in preparation for the
First GARP Global Experiment (FGGE), later relabeled the Global Weather
Experiment (GWE). Table I lists the methods in use by 10 advanced weather
services at the end of the decade. These methods will not be reviewed
extensively here, because of lack of space. The SCM, polynomial interpola-
tion and statistical methods have already been mentioned, with references.
Among statistical methods, univariate interpolation refers to linear regres-
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Characteristics of data assimilation schemes in operational use at the end of the 1970s (after
Gustavsson, 1981)

Organization Operational analysis Analysis  Analysis/
or country methods area forecast cycle
Australia Successive correction method (SCM) SH*® 12 h
Variational blending techniques Regional 6 h
Canada Multivariate 3-D statistical interpola- NH © 6 h
tion Regional (3 h for the
surface)
France SCM; wind-field and mass-field bal- NH 6h
ance through first guess
Multivariate 3-D statistical interpola-  Regional
tion
Federal SCM; upper-air analyses are built NH 12 h
Republic of  up, level by level, from the surface (6 h for the
Germany surface)
Variational height /wind adjustment Climatology
only as
preliminary
fields
Japan SCM NH 12 h
Height-field analyses are corrected Regional
by wind analyses
Sweden Univariate 3-D statistical interpola- NH 12 h
tion
Variational height/wind adjustment Regional 3h
United Hemispheric orthogonal polynomial Global 6h
Kingdom method
Univariate statistical interpolation
(repeated insertion of data)
US.A. Spectral 3-D analysis Global 6h
Multivariate 3-D statistical interpola-  Global
tion
U.S.S.R. 2-D b statistical interpolation NH 12 h
ECMWF * Multivariate 3-D statistical interpola-  Global 6h

tion

2 European Centre for Medium Range Weather Forecasts.
® 2.D are in a horizontal plane.
¢ Southern Hemisphere (SH) and Northern Hemisphere (NH).
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sion for each meteorological variable separately. Multivariate interpolation
attempts to take into account the dynamical, non-linear coupling between
field variables at least in a linearized, statistical sense.

The only methods in Table I not explicitly mentioned so far are varia-
tional (Sasaki, 1958). It is clear, however, that noisy, inaccurate data should
not be fitted by exact interpolation, but rather by a procedure which has to
achieve two goals simultaneously: (i) to extract the valuable information
contained in the data, and (ii) to filter out the spurious information, i.e., the
noise. Thus the analyzed field should be close to the data, but not too close.

The statistical approach to this problem is linear regression, which in the
presence of certain constraints is sometimes called ridge regression. The
variational approach is to minimize the distance, e.g., in a quadratic norm,
between the analyzed field and the data, subject to constraints that yield a
smoother result. The connection between these two approaches in a sta-
tionary, ergodic context is intuitively obvious, and is reflected in the fact
that root-mean-square (r.m.s.) minimization is used in popular parlance for
both approaches.

The exact correspondence between variational weights and covariance
matrices follows from a duality result of Kimeldorf and Wahba (1970). The
polynomial interpolation referred to earlier (Panofsky, 1949) and in Table I
1s in fact a variational method with analyzed fields prescribed to be of 2-D
polynomial form, with the total number of coefficients much smaller than
the number of data points; this ensures smoothness of the analyzed field
without imposing any dynamic constraints.

The analysis method in widest operational use today in NWP is a
particular form of statistical interpolation, commonly referred to as optimal
interpolation (OI: Lorenc (1981) and McPherson et al. (1979)). OI is
described within the broader context of estimation theory in section 2 of
Part 1I. A particular implementation of variational ideas, using the equa-
tions of motion as a strong constraint, is also being considered at present by
some weather services (Courtier and Talagrand, 1987). This implementation
by the adjoint method is discussed in Part II in the context of an important
duality result in estimation and control theory.

General reviews of meteorological analysis and assimilation methods are
Bengtsson (1975), Bengtsson et al. (1981), Bourke et al. (1985), Hollings-
worth (1987), Thiébaux and Pedder (1987) and Williamson (1982). Brief

- unifying treatments are given by Lorenc (1986), Phillips (1982) and Wahba

(1982). The present article provides its own unifying point of view, that of
sequential estimation. Estimation and control theory deals with the solutions
of randomly perturbed systems of differential equations, subject to various
distributions of data and to different types of forcing. It permits therefore a
proper understanding of the combination between imperfectly known dy-
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namics and inaccurate observations, as well as an evaluation of various
algorithms for weighting incoming data against a forecast based on past data
(Ghil, 1986).

Rather than present this theory in all its generality, I use a simple model
of geophysical flow to bring out the salient aspects, as they apply to data
assimilation for the atmosphere and oceans. These points are then buttressed
by comparison with accumulated experience from full-scale NWP models
and real meteorological data. In the course of the presentation, relations to
other points of view, such as Bayesian estimation (Lorenc, 1986), OI with
variational constraints (Phillips, 1982), regularized spline interpolation
(Wahba, 1982), and variational minimization by the adjoint method
(Talagrand and Courtier, 1987) should become reasonably clear.

This article is loosely based on Ghil et al. (1981, 1982, 1983) and on Cohn
(1982). Of these primary references, only Ghil et al. (1981) has appeared in
the open literature. Its results are presented here for tutorial purposes, and
are greatly abridged. The additional results of Cohn (1982) and of Ghil et al.
(1982, 1983) are given greater emphasis, as are the comparisons with NWP
models and real data (Ghil et al., 1979; Halem et al., 1982; Balgovind et al.,
1983; and others). Part II is based on recent reports and unpublished work
leading up to the present. The two papers also address specific issues of data
assimilation not covered by the preceding references, with a special emphasis
on future applications to physical oceanography.

3. ESTIMATION THEORY AND DATA ASSIMILATION
3.1. Multiple measurements, estimation and minimization

The previous two sections have given a feeling for the need to combine
statistics and dynamics in using incomplete and inaccurate information to
estimate the state of the geofluid. To develop an ability to do so, however,
requires a few steps, the last of which are non-trivial.

To begin, take two independent measurements y and z of a quantity x,
such as the temperature of the mixed layer at a point; it is natural to seek an
estimate of x, call it £, in the linear form

X=ay+a,z (1)
We assume that the two measuring instruments are unbiased ;
Ey=Ez=Ex (2a)

E is the expectation operator, i.e., it represents the ‘mean’ or ‘average’ of an
infinite number of measurements. Requiring the estimate itself to be unbi-
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ased, £X = Ex, immediately implies that e; + a, = 1 and hence eqn. (1) can
be rewritten as

R=y+a,(z-y) (1)
i We also assume that the measurement errors are uncorrelated
E(y—x)(z=x)=0 (2b)
§ and that their variances o] and o} are known
%
¢ of =E(y—x)’ (2¢)
i of =E(z~x)’ (2d)
4 the special equality sign ‘=" is used for defining identities.
The optimal linear unblased estimate of x is given by choosing a, and
‘ =1 - a, so as to minimize the variance
:=Eu—xf (3)
of the estimation error. The required minimum is achieved by choosing
E =62/0} (4a)
i =62 /02 (4b)
here 62 is just the variance of the optimal estimate given by

6_2=0_2+02_2 (4c)

The weights «a, and a, thus reflect the relat1ve uncertamtles in y and z,
respectively, and 62 is smaller than both ¢f and ¢}. In fact, it is convenient
to call accuracy 4 := 02 the inverse of the variance of a random variable.
With this terminology, eqn. (4c) states that the accuracy of a linear,
unbiased, optimal estimate equals the sum of the accuracies of unbiased,
mutually uncorrelated measurements.

Formally, the variational approach to estimating £ requires one to
minimize

J=Bi(x=y) + By(x = 2)’ (5)
for arbitrary weights 8, and B,. The result will be the same, eqn. (1) with
eqn. (4), provided

By = 0‘12 (6a)
B, = 0‘% (6b)
Problem (5) appears to be simpler, since no statistical assumptions (eqn.

(2a-d)) need to be made. But eqn. (6) shows that some access to information
like egn. (2c and d) is required.

A e B S —
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As discussed by Lorenc (1986), Wahba (1982), and their references, this
information can also be retrieved variationally, given a distribution of
observations in space or time, which, by ergodicity, is equivalent to a
distribution in probability space. The variational problem has to be re-
formulated for these purposes as minimizing

Ji=(x—y) + (x—2z) +Ax? (7)

and the regularization or smoothing parameter A has to be determined from
the data. This can be done by a resampling scheme (Efron, 1982), such as
the bootstrap, (generalized) cross-validation, or the jack-knife. The result
should still be the same, to within sampling error.

At this point, it becomes clear that preference for the statistical approach
(eqgns. (1) and (4)) or the variational approach (eqn. (7)) hinges on computa-
tional considerations. The relative efficiency of numerical algorithms derived
from either approach cannot be determined from our little two-measurement
example, and so we move on to the next step in this section’s exposition of
estimation theory.

3.2. Sequential estimation and optimal data assimilation

Estimation theory deals with the solutions of randomly perturbed systems
of differential equations, ODEs or PDEs, as determined from noisy data
distributed arbitrarily in space and time. This is an extremely active area of
research in engineering and in mathematics, as witnessed by the large
number of periodicals and books (e.g., Bucy and Joseph, 1987; Jazwinski,
1970; Gelb, 1974) dedicated to it.

It is entirely sufficient for our present purposes to consider the ODE, or
lumped-parameter case, in discrete time, since any numerical model of the
atmosphere or ocean has to be presented in such a finite form to modern
computational devices (Ghil et al., 1981). Furthermore, in the next few
sections we shall deal with linear flow equations. Non-linear models are
taken up in section 5 of Part II, where it is shown that the quadratic,
advective non-linearities of GFD are well handled by the successive lineari-
zations associated with the so-called extended Kalman filter (EKF).

With these caveats, and the insight gained from the previous subsection, a
linear unbiased data assimilation scheme for the geofluid can be written as

wi =Y, _ W (8a)
w,f=w,f+Kk(wk°——ka,f) (8b)

The state vector w represents all model variables, such as temperature and
velocity components, at a set of grid points or in the form of spectral
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coefficients; the forecast model (eqn. (8a)) is advanced in discrete time steps
At, w, =w(1,), t, = kAr; superscript f stands for the forecast, o for observa-
tions and a for the analysis; ¥ is the system matrix, describing its (at first
linear) dynamics; and H, is the observation matrix.

The observation vector w has dimension p, << N, where N is the
dimension of w; and w2. The matrix H represents the fact that only certain
variables or combinations thereof are observed, at a set of points much
smaller than the total number of grid points (see Figs. Al and A3). Thus
remote soundings of radiance by polar-orbiting satellites combine atmo-
spheric temperatures, or tomographic soundings of acoustic travel times
combine oceanic densities. Matrix H also represents the interpolation of grid
values to data location for a grid-point model and (inverse) spectral trans-
forms to physical space for a spectral model. This being said, I shall
concentrate hereafter for simplicity on grid-point, finite-difference models.

The vector wo — H,w/ contains the new information provided by the data.
It is called innovation vector in the engineering literature and observational
residual in the meteorological literature.

Equation (8b) has the form of eqn. (1'), with y = w/, z =w? and a, = K,
The conceptual difference between eqns. (8) and (1) is that w,/ represents
past observations, and the practical difference is that Pr#* N, e, H, is not
square, and it may have a different size at each time step.

In fact, all operational data assimilation schemes have the form of eqn.
(8b), whether the model (eqn. (8a)) is linear or non-linear. Existing assimila-
tion schemes, such as successive corrections or Ol, differ from each other by
the weight matrix K, and we wish to find the optimal K, in a precise sense
to be defined forthwith; in the engineering literature, K, is often called the
gain matrix.

To be precise, we need a well-defined set of assumptions, and here they
are. First the true evolution of the geofluid, w;, is governed by

t__ t ]
We=¥, W _+b_, (92)
where bj, is a (Gaussian) white-noise sequence, i.e.

Eb, =0 (9b)
Eb, (b)) = Q,5,, (9¢)

8, is the Kronecker delta, and superscript T indicates the transpose (of a
column vector, in this case); b}, is called the system noise.

No difficulty arises by adding a deterministic forcing b, to the governing
eqn. (8a), so that eqn. (9b) becomes

Eb,=b, #0 (9v")

i g e
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Forcing is, in fact, more important for oceanic flows than for atmospheric
ones. But in a linear problem one can always separate the particular, forced
solution from the homogeneous one. It is the lack of complete initial data
for the latter that we wish to compensate for by observations distributed in
time. Deterministic forcing will be reintroduced when considering the dual-
ity between deterministic control and stochastic estimation in Part II.

Current NWP models are in fact close to perfect, in the sense that their
error is almost white, in space and time. Balgovind et al. (1983) have shown
that the potential vorticity error of the second-order accurate NWP model
then in use at the NASA Goddard Laboratory for Atmospheres (GLA),
verified at 24 h and 36 h against a special set of satellite and conventional
data comparable to that in Fig. Al, is essentially random, stationary in time,
and nearly white in space. Their results are consistent, at least, with an error
equation forced by temporally-white noise (Balgovind et al., 1983, their
eqns. (2.1-2.5)), which leads to an accumulated system noise covariance
growing linearly in time.

In meteorological Ol it is commonly assumed that the spatial correlations
of mass-field forecast errors are constant in time, while the variances are
constant in space and grow linearly in time (McPherson et al., 1979; Lorenc,
1981). This linear growth of variances is typical of Brownian motion with
so-called independent increments, i.e., driven by temporally-white noise.
This is again consistent with the error of state-of-the-art NWP models being
close to white. Numerical models of the ocean are not quite at this stage, but
systematic errors can and will be eliminated by physical insight, numerical
trial and error, and by applying systematically estimation and control theory
(Part 1I).

The second assumption used in optimizing the weight matrix K, concerns
the error model for the observations

wo =H,w, + b} (10a)

where by, is the observational noise. One assumes that b is also a (Gaussian)
white-noise sequence

Eb=0 (10b)
EB(b))" =R,8,, (10c)

For convenience of the presentation, it is assumed furthermore that system
noise and observational noise are uncorrelated with each other

Ebj (b)) =0 (11)

The assumption (eqn. (10c)) of observational errors being uncorrelated in
time with each other, as well as that of their being uncorrelated with forecast
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errors (eqn. (11)), needs further examination. Temperature observations
derived from satellite radiances can have errors correlated from one time
step to the next, violating assumption (10c). If forecast temperatures are
used as “first guesses’ in the inversion of the non-linear radiative transfer
equation (Susskind et al., 1984), then assumption (11) might also be violated.
Similar considerations will arise in oceanographic prediction systems deriv-
ing density and velocity observations from different versions of acoustic
tomography (Cornuelle et al., 1985), for instance.

It is fortunate, therefore, that neither of these two assumptions is crucial
to the subsequent results. Correlations between system noise b}, and observa-
tional noise b} can be handled by the formulation of an equivalent problem
of the same vector size, for which assumption (11) is satisfied (Gelb, 1974, p.
124, eqns. (4.3.15-4.3.18)). Correlated measurement errors can be handled
by careful state-vector augmentation or, better even, by measurement-dif-
ferencing techniques (Gelb, 1974, section 4.5, especially p. 136 and reference
given there); the latter lead to a problem of the same size, and correspond
essentially to subtracting from each new observation the part correlated with
the previous observation.

Assumptions (9-11) are thus valid either for the model equations derived
directly from physical principles, or for the equations modified slightly as
discussed above. These assumptions permit us to derive the evolution in time
of the error covariance matrices

Pl = E(wit = w)(wie —w) (12)

of the forecast w and the analysis w2, respectively. This evolution follows
from eqns. (8), (9a) and (10a), using eqns. (9b and ¢), (10b and c) and (11),
and it is governed by

P = ‘I'k—lplf—-l‘l'/;r—l +Q, (13a)
Pi=(I-KH)P/1-KH,) +K,R,K! (13b)

Hence, by advancing P/ along with w/?, one can know how well the true
state w, is estimated, for any weight matrix K,, i.e., for any data assimila-
tion scheme, operational or contemplated. Knowledge of the estimation
error for arbitrary K permits one to determine the optimal K,, which
minimizes this error.

There are two problems that arise at this point. First and foremost, the
computational complexity of advancing in time the error covariance matrices.
While eqn. (8a and b) represent O( N) computations per time step, eqn. (13a
and b) represent, at face value, O( N?) computations. This is quite tolerable
for typical engineering applications with N < 1000 say, but prohibitively
expensive for atmospheric and oceanic prediction or simulation models with

s
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N >10°. In section 3 of Part II it is shown that, by exploiting special
features of the dynamics matrix ¥ and the covariance matrix P which arise
in the latter applications, the operation count can be reduced to O(N), i.e,, it
can be made comparable to that for currently operational, less sophisticated
data assimilation methods.

Second, the noise covariance matrices Q, and R, are assumed to be
known in the subsequent derivation of the optimal K,. This is not so in
practice, and finding the actual magnitude of system errors and observa-
tional errors is an important function of the data assimilation process. A
computationally efficient, adaptive filter to do this is described in section 4
of Part II.

The optimal weight matrix K, at each time step is obtained by minimiz-
ing the expected mean-square (m.s.) estimation error

J=tu P} ==E(w,f—w,§)T(W,f~W,§) (14)

This is done by using eqn. (13b) for the matrix P} and setting the derivative
of J with respect to K, equal to zero. The crucial ingredient is the identity
for the derivative of the trace of a product of matrices

)
—tr(ABAT) = 2AB
dA

where B is symmetric; this applies to P in (13b), since both P/ and R, are
symmetric by definition.
A unique, absolute minimum is attained for

K,=K;=PHI(HPHI+R,) (15)

The linear unbiased data assimilation scheme given by eqn. (8a and b), with
the optimal gain matrix K} in eqn. (15), is called the Kalman filter (Kalman,
1960). Its continuous-time counterpart is often called the Kalman-Bucy
filter (Kalman and Bucy, 1961).

To complete the analogy between the Kalman filter and the two-measure-
ment example of subsection 3.1, it is useful to rewrite eqns. (13b) and (15) as

P2) = ()" + HIR;'H] (16a)
K: =PH[R;! (16b)

It then becomes clear that eqn. (16a and b) is the counterpart of eqn. (4a—c),
i.e., the weight given to the current observations is inversely proportional to
their variance, and the accuracy of the analysis is the sum of the accuracies
of the forecast, based on the past observations, and of the current observa-
tions.

N e ARt e




186

The formula (eqn. (13b)) for P/ can be simplified when K, = K%, and the
entire filter, with this simplification, is rewritten here for easy reference

w = ¥ _wi, (17a)
Pi=¥ P ¥ +Q,, (17b)
K} =P/HI(H,P/H] +R,) (17¢)
P{=(I-K{H,)P/ (17d)
w,f=w,f+K,’f(w,f——ka,f) (17¢)

At times when no observations are available H, =0 and, by eqn. (17¢c),
K¥ =0 as well. In this case, w2 = w, and P2 =P/

It turns out that the Kalman filter (K-filter hereafter) is much more
general than the derivation above would indicate. First of all, the minimized
variance J, can contain an arbitrary symmetric, non-negative semi-definite
weight matrix AT= A > 0, to wit

Iy=E(wt—wi) A(ws —w}) (18)

The result is still K} of eqn. (15), independently of A (see Ghil et al. (1981)
for a two-line derivation of this generalization). It follows that the same
optimally estimated solution will be obtained whether one wishes, on
physical grounds, to minimize the expected kinetic energy or the expected
enstrophy of the velocity field errors.

Second, the K-filter minimizes the estimation error variance not only at
every time step, but over the entire interval over which data are provided.
This fact, and connections to deterministic variational methods, via control
theory, are discussed in Part II. Here it suffices to note that the filter (eqn.
17)) is sequential, or recursive, i.e., current observations are discarded as
soon as they are processed, or assimilated. This is due simply to the filter’s
extracting all useful information from the innovation vector, or observa-
tional residual, at each time step, by an application of Bayesian ideas in a
dynamical context (Kalman, 1960; Lorenc, 1986; Part II).

The sequential nature of the K-filter (eqn. (17)) makes it conceptually
easy to grasp, and it has great practical advantages, as we shall see in the
next sections. It is probably the major reason for the astounding success of
the K-filter, and of its various computational modifications (e.g., Bierman,
1977; Budgell, 1986), in engineering applications.

This being said, it is time to see the filter in action on a GED problem.
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4. SEQUENTIAL ESTIMATION FOR A SIMPLE BAROTROPIC MODEL

4.1. Governing equations

To illustrate the performance and properties of the Kalman filter, and of
modified and suboptimal versions thereof, let us consider a simple model
problem. The model problem is governed by a linearized, spatially 1-D
version of the shallow-water equations

u,+Uu,+¢,~fo=0 (19a)
v+ Uo, + fu=0 (19b)
¢+ Up, + Qu, ~ fUr=0 (19¢)

The features that make this system worthy of interest, in spite of its great
simplicity, are the presence of advection, of the Coriolis acceleration and
B-effect, and of two physically distinct types of waves, slow Rossby waves
and fast inertia-gravity waves. Non-stationary Rossby waves arise in this
constant-f model from the equivalent B-effect due to the — fUv term in the
continuity eqn. (19c). The equivalent 8 is given by Be =fU/D (Phillips,
1971).

As usual, the coordinate x points eastward, u and v are perturbation
velocities, eastward and northward, while ¢ is the perturbation geopotential.
The parameters are chosen with meteorological, mid-latitude applications in
mind. Thus the mean zonal current is taken to be U= 20 m s~!, the mean
geopotential is ® =3 X 10* m? 572, and the Coriolis parameter is f=10"*
s~ L. The resulting equivalent 8, is 6.7 X 10~12 m~1 s71, so that B, = B/2
with 8 the usual value at 45° latitude.

The components of the state vector w, are the values of (u, v, ¢) on a
space-time grid (jAx, kAr) over which eqn. (19) is discretized by a finite-
difference approximation (Ghil et al., 1981). The approximation in question
is the Richtmyer two-step version of the Lax—Wendroff scheme, which is
second-order accurate in both space and time. The number of points used,
1<j<M,is M=16, so that N=3M=48. A spatially 2-D version of
system (19), with N =3 X 60 X 61 = 10980, is discussed in section 3 of Part
IL

The time step, chosen close to the Courant-Friedrichs-Lewy stability
limit, is A¢ = 30 min. In this simple case, the dynamics matrix ¥, is constant
in time, ¥, = ¥. But the reason for using U # 0 and the equivalent B-term in
the first place is the desire to build towards a satisfactory solution of the
data assimilation problem for non-linear models. The EKF and its adapta-
tion to GFD problems requires successive linearizations about realistic flows
(Ghil et al., 1981, 1982; Budgell, 1986; Lacarra and Talagrand, 1988), i.e.,
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¥, will change, albeit slowly, in time. It is shown in section 5 of Part II that
the estimation can still proceed quite successfully in this more general and
realistic case.

4.2. Dynamics and observing patterns

Different observing patterns are presented here, to reflect both conven-
tional, land-based, and current, remotely sensed data sets (Fig. Al). The
simplified geometry of the conventional observing system is shown in Fig. 2.

There are two equal land masses, which we think of as Furasia and North
America, and two equal oceans, the Pacific and the Atlantic. The total
length of the physical domain is 2L, with each ocean and each continent
L/2 long. Only two-periodic solutions are considered, so that the 16 grid
points occupy the computational domain of length L = 14000 km. Individ-
ual grid points that appear in the discussion of the results in this and
subsequent sections are identified in Fig. 2 and its caption.

The solution of eqn. (19) to be estimated consists of a single Rossby wave
of wave length L/2, i.e., of wavenumber 4, and of amplitude ¢, = 2.5 X 10°
m? s~ ?. This amplitude corresponds to a typical ridge-to-trough difference
of 500 m in the height of the 500 mbar pressure surface (Ghil et al., 1981). It
follows that ¢,/® = 1,/12, which is consistent with the linearization about a
constant mean state for moderate evolution times. The travel time of this
wave over a distance L, given to first order by L/U, is roughly 12 days.

The idealized conventional observing system we consider first consists of
complete observations of winds and heights over land, and no observations
over the ocean. A similar situation in oceanography corresponds to the
availability of expendable bathythermograph (XBT) observations along
shipping lanes (see the Appendix) and, in future field experiments, of buoy
clusters and acoustic-tomography arrays (Munk and Wunsch, 1979), with no
observations in other ocean areas. The observations in the present case are
assumed to be available synoptically, every 12 h.

TO HA SF St NY LN TO = NY

| TSNS SN A NN U O YOO O T T N O O 0 % U A 1O WO A A
T il SIS L B

Pacific N. America Atlantic Eurasia

Fig. 2. Distribution of land masses and oceans for the model system (19). Individual grid
points of interest are identified as follows: the mid-ocean point (Hawaii, HA); the mid-conti-
nent point (Saint-Louis, SL); the continental point nearest to the west coast (San Francisco,
SF); nearest to the east coast (New York, NY; identical by sectorial periodicity to Tokyo,
TO); and the ocean point just off the west coast (London, LN).

o s D ey RO




189

Thus H, is periodic, with a period of 12 h, or 24At. At synoptic times
H,=H,=( 0), where I and 0 are 24 X 24 identity and null matrices,
respectively. At all other times, H, = H, = (0 0).

4.3. Results and interpretation

4.3.1. Conventional observing system

The initial error covariance, Py, and the observational noise covariance R
are chosen in accordance with current NWP practice (McPherson et al.,
1979; Ghil et al., 1981; Lorenc, 1981). As we shall see, the value of P, is not
important in a linear problem, although it will certainly be so in non-linear
problems with multiple attractor sets (Ghil et al., 1985; Ghil and Childress,
1987, Chapter 6). Covariance R is chosen to be diagonal, with values of
r.m.s. geopotential error of 200 m* s~? and r.m.s. wind error of 2 m s~
Relative errors in both wind and geopotential are therewith of about 10%.
The system noise covariance Q is taken so as to yield a characteristic
decorrelation time between two realizations of eqn. (9a) close to 2 weeks, the
typical predictability time of atmospheric disturbances (Lorenz, 1985).

The results are shown in Fig. 3. The curves are marked U, V, P and E for
the expected r.m.s. error in the estimation of u, v, ¢ and the total energy,
E =u*+ v? + ¢*/®, respectively. These results do not depend on the par-
ticular choice of initial state (u, v, ¢) at t =0.

Over the data-dense region (‘land’), the error immediately decreases
below the level of observational error, at the first observation time. It
increases again in between successive observation times, due to the system
noise, as well as to the advection of error from over the ocean (Fig. 3a).

Over the data-sparse ocean (Fig. 3b), the error decreases much less at
observation times. This decrease is strictly due to the filter’s spreading the
information just received over land to the adjacent ocean points. The
increase of error in between observation times is much milder than over
land: the gradual advection of information from over land partially com-
pensates for the local system noise. The net result in the long run is a
decrease of estimation error over the entire region (Fig. 3c).

Particularly remarkable is the fact that, after a few days, the entire
prediction—observation system settles into an asymptotically periodic behav-
ior. Estimation errors after observation time and in between repeat almost
exactly every half-day. In upper ocean prediction, for an assimilation cycle
to reach this asymptotic regime, the time required would be a few weeks or
months, rather than a few days. If the ratio of system noise Q to observa-
tional noise R is similar to that in the case illustrated, error levels in the
asymptotic regime would be considerably smaller than initially, in both
data-dense and data-sparse regions. For the ocean, of course, reasonable
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Fig. 3. Evolution in time of the estimation error for a conventional observing system. The
curves labeled U, V, and P are obtained by summing those diagonal elements of P, which
correspond to u, v and ¢, respectively. The ordinate is normalized so that 1.0 corresponds to
an expected r.m.s. error of ¢, for the P curve (dotted), of vy, = 4¢, /f for the U and V curves
(dash-dotted) and of 2v3 + ¢ /® for the E curve (solid). The observational error level is
indicated in each panel; it equals 0.08 for the P curve and 0.09 for the U, V and E curves.
The panels show the expected r.m.s. error over (a) land, (b) ocean, and (c) the entire domain
(after Ghil et al., 1983).
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estimates of Q and R are yet to be determined: Q by predictability studies,
and R by the assimilation of the new and expected remote-sensing data.

To understand the connection between the asymptotic error level and the
relative noise levels in dynamics and observations, it suffices to consider a
simple, scalar case. For a single equation with constant coefficients, and
observations every r time steps (r = 24 above), the covariances and weights
of the K-filter (eqn. (17)) reduce to

Pf=¥2P  +Q (20a)

P?=P/R/(P/+R)  (for k=jr) (20b)
=P/  (otherwise) (20b")

K, =Pi/R (20¢)

From eqn. (20b) it immediately follows that

P < {P{,R} (21)

In particular, the estimation error variance drops to or below the observa-
tional noise level at each observation time, although it may grow in between
model updates.

To study the asymptotic behavior of eqn. (20), let

S,=P,, j=0,1,2,... (22a)
A= P2 (22b)
r—1
B:= ) ¥ (22¢)
p=0
(Ghil et al., 1981). Then eqgn. (20a and b) yields
S, =g(S;-1) (23a)
for
(As+BQ)R
g(s)=———— (23b)
As+BQ+R

In the case of a truly perfect model, Q = 0, the non-linear difference eqn.
(23) has the explicit solution

SR (if |¥|=1) (24a)
7 jSy+R it ¥l
A’(A —1)S,R

(if | ¥ 1) (24b)

)T AA - 1)S, + (A— 1R

SIS




192

It follows that, as j — + o0
S, -0 for|¥|<1 (25a)

1
Sja(l—X)R for |¥|>1 (25b)

The former is the case for our conservative PDE (eqn. (19)) discretized by a
dissipative numerical scheme. The latter would be the case for an unstable
system, either due to baroclinic instability or to an (intentional) numerical
one (Miller, 1986).

For a neutrally stable, perfect model, eqn. (24a) exhibits exactly the same
dependence of r.m.s. error S}/ ? on the number of observations j, S}/ 2~
1/(j)/? as for estimating the mean of a stationary time series from
independent observations. The inverse-square-root behavior of estimation
error is confirmed by model results with Q, = 0 (Ghil et al., 1981, fig. 2; not
shown here), and indicates that, for perfectly known model dynamics ¥, # I,
the K-filter reduces the estimation process to the well-known one for ¥, = 1.
This is a remarkable result, since the number of model variables is twice the
number of observed ones, and the unobserved variables over the ‘ocean’
could not have been estimated at all had simple persistence, ¥, = I, been
assumed.

Of course, models are not perfect, so that we need to consider, as in Fig.
3, the case of system noise Q > 0. The quadratic equation

s=g(s) (26)

has real roots of opposite sign. Let S_ denote its unique positive root. S_ is
approached monotonically by solutions of the recursion (23a), from above
or below, according to the value of S,. It follows that the convergence of the

weights
K,—>K,=S_/R ’ (27)

1s also monotone as j — + oo. Neither S nor K_ depend on S,.

The result for the scalar case is in agreement with the monotone decrease
of trP} in Fig. 3a—c. In fact, both trP{ and trP? decrease monotonically for
all k=jr+ p, from one cycle j to the next (j + 1), given p fixed.

To obtain an approximate value for S_, let us assume that |¥| <1 and
r>1, so that A = ¥*" < 1. Then the quadratic term in eqn. (26) is negligi-
ble and, to good approximation

So'=R'+(1-¥2)Q"! (28)

Thus the asymptotic analysis accuracy is slightly less than the sum of the
observational accuracy and the model accuracy.
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In the case of good observations, R << Q we have S_ =R, in agreement
with the results for v, ¢ and E in Fig. 3a; the variable u is only weakly
coupled to v and ¢ in eqn. (19) (see Cohn (1982) and Ghil et al. (1981) for
details). For poor observations or none, R> Q and S_=Q/(1 — ¥?), as
seen in Fig. 3b and confirmed by experiments with different values of Q
(not shown). But always (cf. Fig. 3¢)

S, <min{R, Q/(1 - ¥?)} (29)

The asymptotic filter K obtained by substituting P = S_ into eqn. (16b)
is the original Wiener—Hopf filter (see section 2). Kalman’s (1960) work
gave essentially a much more efficient way to compute an excellent ap-
proximation to it. Using the gain matrix KF, where 7' =10 days, yields in
fact estimation results for system (19) which are indistinguishable from those
in Fig. 3 after 1 to 2 days (Ghil et al., 1981). This point will come up again
in sections 3 and 5 of Part 1L

4.3.2. Satellite observing systems

As indicated in section 2, the modern era of data assimilation in meteorol-
ogy started with the advent of satellite data, and the attempt to use them in
operational NWP (Atkins and Jones, 1975; Bengtsson, 1975; Ghil et al,,
1979). 1 shall proceed therefore with the study of observational patterns
simulating polar-orbiting and geostationary satellites in system (19).

To further motivate this theoretical study, let us consider first the effects
of advection of information in a realistic, fourth-order accurate NWP model,
with and without remote-sensing data (Halem et al., 1982). Figure 4 reports
results obtained at GLA using data from the first Special Observing Period
(SOP-1) of the GWE (formerly FGGE), and a 6-h analysis/ forecast cycle
(see section 2, especially Fig. 1).

Figure 4a shows the distribution of conventional upper air stations at one
synoptic time during SOP-1 (compare with Fig. Alg): they are dense over
the continents of the Northern Hemisphere, with less concentrated patches
over Australia, South America and some oceanic areas. Figure 4b—d show
the results of assimilation experiments for the first two weeks of SOP-1,
5-21 January 1979. These results are presented as the r.m.s. difference
between pairs of fields, where the mean is over all grid points and over all
synoptic and subsynoptic times, i.e., every 6 h during the given period.

In Fig. 4b we see the difference between the 6-h forecast, or ‘first guess’
w', and the objective analysis w* in the NOSAT assimilation cycle. The
NOSAT cycle is based essentially on the data in Fig. 4a (see also Fig. Ald
and g), and uses no satellite data; hence its name. The elongated error
maxima (A, b0 > 60 m, hatched) along the western part of the Americas
and from China to Australia are quite striking: the model’s estimate of the




194

90N
e, <
,7. /"'?)_‘_’_bj>~
kﬂ\“f". . : . “11.“
¢ [ ) . n
60N Ly P Satien o | Ocba
X P, L] .
S J\;‘é_:‘.m«ﬂ 0N
0
3,
N '.oo.
30 "
. oe |®
S e O - % .
]
u L ] é ' e
L] ] ) L ]
0 L]
PNy
e
¢ o = e O o
PO
. e ¢ o
.
. %%
aos voplvslt
N . ® v }
' ¢ k
r ° *
60S "
- | ' <
80S s
180W 140W 100w 60w 20w 20E 60E 100E 140E 180E
b) 3
son [10) e 0222t = i~
(4) ERAE |} e 4] Sf =
g by ST L
60N AL SLT - 2] o (0 MR 1 A
DAY 3 R PO & og/w L R AR
Y < o HiCr e SaW s i B 2N0s sk B> A A P
- v G WS -\ W o 1 o
B : ‘![{Q" . et i i
A o - 6 \
20N R A Y
4 H 4_‘4'_‘.-‘ 2
0 v = /2 9 LAY
X $, . (s N B Oy |
4 . : O VEX [V o 4
208 Y A — A~ ey S o > | 5
35 N TN s 2 B A
M2, =Ll SR i;.{; s\ 20
408 — 4y e
: I 7% Py 4 ar e e
6%, pRet R »'--.‘,i?@ A@f a4
,- LA AN S A
60S - P D St S | e 2
3 4 e La . 4 -
7 e ALy S 7
80S A » V2 N
' PP LIS <, o7 Sy O (L o
180W 140W 100W 60w 20w 20E 80E 100E 140E 180E

Fig. 4. Advection of information in the data assimilation cycle of a nearly operational NWP
model. (a) Rawinsonde stations reporting at 00 Greenwich Mean Time (GMT) 9 January
1979. (b-d) Root-mean-square differences between pairs of 300 mbar height fields
(B msPa00): (b) 6-h forecast and analysis of the NOSAT cycle; (c) 6-h forecast and analysis
of the FGGE (GWE) cycle; and (d) NOSAT and FGGE analysis. Contour interval is 20 m;
areas with A, ¢35, <20 m are shaded; those with A, ¢4 > 60 m are hatched (after

Halem et al.,

1982).




R A
w ,.
= % - W
8 . ) 1
:.,,.\ - s '\ Z W_
T , . 1 i
e B o 1. ,
LR it AR S |
gss ) NN |
AN y : , “
; ( .<4 ﬁ ) ) ..F_ .'
KN m _ TAS ¥
w /4\/ 5o m\_,.q ] _ m »,,o
YR X |
%\ > “ X
sl , 'y |
NS W _ |
N |\
\ 4 mn/ . 0 .A
N - . ” \
i w/ w(, 3 '8
\ ﬁu \ .
7
- £ "
N B NABIINES
3 : /
N AN S
, (=]
By )w: _ \ K
P , TN w S e v% e
, ”%M e s B ) NI . 3
i / . N = 2
' X2 : \ y
3 /W ; o} T o=
M C_ , vv y N w 3 /ay _\\W%mm ,m\
\ , | 6% TW.. N (RN §
ST ) i
..\ A S22 Q = I
(T \ R S S .1
o S«ZJ Vmﬂ ¥ 2 SR
Inwﬁ.u/b A EN P | . m m 5 . : : ;
z (=)
§ 8 &8 &8 o 8 8




196

atmospheric state over the Pacific and the Indian Ocean has large errors.
These errors are propagated by the flow over the data-dense areas (cf. Fig.
4a). where they clash with the analysis every 6 h (see Fig. 3a). This
discrepancy does not develop over Europe, since the Atlantic is too narrow
for the accurately estimated state over North America to deteriorate suffi-
ciently.

The elongated error maxima, owing to poor estimation over the oceans,
disappear in the difference (Fig. 4c) between the GWE (FGGE) first guess
and analysis, based on all the SOP-1 data (see Fig. Ala-g). The satellite
data available over the oceans (Fig. A1b and e) help reduce the development
of large errors in the assimilation cycle’s asymptotic steady state (see days
5-10 of Fig. 3b).

The difference between the objective analyses of the NOSAT and the
FGGE cycles (Fig. 4d) is quite sinall over the extensive data-dense areas of
the Northern Hemisphere, and over the limited patches of shared observa-
tions in the Southern Hemisphere. It is very large in those areas where only
remotely sensed observations anchor the FGGE assimilation cycle, and none
are present in the NOSAT cycle. Since the methodology of the assimilation
did not provide a built-in error esimate (eqn. (13b)), it is hard to tell how
much of the difference in Fig. 4d over the southern oceans is systematic
error in the NOSAT cycle or random error in the GWE cycle.

These results with a quasi-operational NWP model and GWE observing
systems permit us to draw three conclusions: (1) that the advection of
information illustrated in the simple, idealized model (eqn. (19)) occurs in
much more complex, realistic data assimilation cycles (Fig. 4b and c); (2)
that asynoptic, time-continuous coverage by satellite data can improve the
estimate of the geofluid’s state (Fig. 4c), in spite of the inherent limitations
in the nature and accuracy of the remotely sensed observations (see Table 11
in section 6); and (3) that a reasonable estimate of the analysis error will
greatly increase the utility of the estimate itself (Fig. 4d).

Let us turn therewith to the promised study of satellite observing patterns
in the simplified system of sections 4.1 and 4.2. This study will highlight the
interaction between observed and unobserved variables, as opposed to the
interaction between data-dense and data-sparse areas. The results of sequen-
tial estimation in eqn. (19) using data from polar-orbiting or from geosta-
tionary satellites are shown in Fig. 5. For purposes of comparison with Fig.
3, the r.m.s. geopotential error and wind error at each point where they are
observed is the same as before, although actual error levels for remotely
sensed data are typically larger than for conventional data.

In the numerical experiment shown as Fig. 5a, the geopotential ¢ is
measured at all grid points every 12 h, but the velocity components « and v
are not measured at all. Thus H, is again a periodic projection matrix, of
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2 Polar Satellites: Global Verification
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Fig. 5. Evolution in time of the estimation error for satellite observing systems. The labeling
of the curves and normalization of the ordinate is the same as in Fig. 3. (a) Geopotential
observations over the entire domain, every 12 h; (b) geopotential measured every 12 h,
alternatively over ‘land’ and ‘ocean’; (¢) velocity observations over the entire domain, every
12 h (after Ghil et al., 1983).

dimension 16 X 48, identically zero except at synoptic times, when H, = H,
= (1 0), with I being 16 X 16 and 0 being 16 X 32. This choice is made to
mimick currently operational, intermittent data assimilation cycles (McPher-
son et al., 1979; Lorenc, 1981), rather than a more desirable, time-continu-
ous cycle (Ghil et al., 1979).
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In the atmospheric case, this observing pattern corresponds to the pres-
ence of two polar-orbiting satellites, giving almost complete mass-field
coverage every 12 h (Ghil et al., 1983). In the oceanic case, partial corre-
spondence is with altimetric measurements attaining similar areal coverage
over a longer time interval, of the order of 2 weeks (Kindle, 1986), for
sea-surface heights only.

When global measurements of a field are available there is no distinction
between the behavior of estimation error at various points, so I show only
the expected r.m.s. error over the total region. The error in all variables
tends quickly to the same periodic behavior as in Fig. 3. The error in ¢ is
noticeably smaller, and that in v is only slightly larger than in the lowermost
panel of Fig. 3. The total r.m.s. error is almost the same.

The middle panel (Fig. 5b) shows the results of an experiment in which ¢
is measured every 12 h over half the domain only, first over ‘land’, then over
the ‘ocean’, as would be the case for a single polar orbiting satellite of the
Tiros series. Again u and v are not measured at all. Here the asymptotic
periodicity is also quickly reached. A phase difference of 12 h in error
behavior over one-half of the region (shown) and the other half (not shown)
appears. The individual amplitudes of the error component oscillations are
larger than in the panel above. The amplitudes of the r.m.s. error over the
total region (not shown) are about the same as in the upper panel for v and
the energy, and smaller for ¢. This experiment shows that information which
is partial, both in geographic coverage and in the nature of the variables
measured, still suffices to obtain state estimates of the geofluid. Given a
nearly optimal data assimilation scheme, the error levels in this case need
not greatly exceed those obtained with more bountiful measurement net-
works.

The last panel of Fig. 5 shows the results of a numerical experiment in
which the velocity components u and v are measured at all grid points every
12 h, while ¢ is measured at only one, arbitrary, grid point. Such a
measurement is necessary to determine the geopotential field completely,
since ¢(x, t)=const. #0, u(x, t)=v(x, t) =0, is a solution of eqn. (19).
In the atmospheric case, cloud tracking from geostationary satellites pro-
vides velocity measurements, while in the oceanic case, scatterometer data
can be used to determine surface winds and wind stress.

The same periodic behavior as in the last panel of Fig. 3 and the first one
of Fig. 5 obtains. Now the error in v is considerably less and that in ¢ only
slightly larger than before. The total error (E) is about 50% smaller on the
average than in Fig. Sa.

4.3.3. Discussion
On the face of it, the smaller estimation errors obtained from total
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velocity measurements could be thought to result from there being twice as
many velocity measurements as geopotential ones. This, however, is not the
case, since errors when v alone is measured (not shown) are only very
slightly worse. A more complete explanation of this interesting result, which
seems to contradict classical geostrophic adjustment theory, is provided by
Daley (1980) within the framework of initialization and slow manifold
theory (Leith, 1980; Lorenz, 1980). Connections to this theory will be made
in the next section, and in section 4 of Part I1.

Variational analysis with a geostrophic constraint (Phillips, 1983) suggests
that velocity measurements contribute more or less to the accuracy of the
estimated total state than geopotential measurements, according to whether
( fL)Z)ZRU/R¢ is much less or much larger than one. Phillips’s result is
obtained assuming complete coverage with both types of observations. In
the numerical experiments reported here, the normalized ratio between
mean-square velocity errors R, and geopotential errors R, 1is close to one
and coverage is by either geopotential observations or velocity observations.

Thus our results agree with Daley’s (1980), derived by conceptual inter-
sections between the slow and data manifold (Leith, 1980) for linear and
non-linear 2-D shallow-water equations, but with no regard to error struc-
ture, and disagree with Phillips’s (1983) results, obtained by using prescribed
error structures in a simple geostrophic-balance model. Hence the need for
both simple and realistic model studies, with more or less sophisticated
statistics, in planning observing systems for the atmosphere, as well as for
the oceans.

The asymptotically periodic nature of the r.m.s. error curves in Figs. 3
and 5 shows that, in fact, the error covariance matrices P,f’a themselves are
periodic in the ongoing prediction—observation cycle. The gain matrix K}
used at update times, eqn. (17c), is therefore either periodic (Fig. 5b) or
constant (all other cases) from one update time to the next. This is due to
the use of time-independent matrices ¥, =¥, Q,=Q and R, =R, and of
constant or periodic observation patterns {H, }.

In all the simple cases treated above, the computational effort can be
reduced considerably: a constant or periodic gain matrix can be used in a
continuous assimilation cycle, and costly computations are not required at
every update time. In a more realistic setting, the gain matrix would have to
be recomputed only when the transition matrix ¥, or the noise covariance
matrices Q, and R, change substantially. Such changes in the model
correspond to long-term changes of the mean circulation pattern, of the
flow’s variability and of observational systems.

In this section we have learned that (nearly) optimal filters enhance the
flow of information from one atmospheric or oceanic field to another, as
well as from one geographic region to another. We have also seen that it is
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probably preferable to measure velocity components, rather than mass-field
variables, for comparable error levels and cost. Finally, computational
simplifications have been suggested by the filter’s asymptotically constant or
periodic behavior.

S. INITIALIZATION AND THE MODIFIED KALMAN FILTER
5.1. Fast waves and initialization

Many aspects of synoptic-scale atmospheric and (mesoscale) oceanic
motions are well approximated by relatively slow Rossby waves. These are
the only type of waves described by the (linearized) quasi-geostrophic (QG)
equations. In NWP, however, primitive-equation (PE) models have replaced
QG models at all major operational centers. (Linearized) PE models also
describe relatively fast inertia-gravity waves, which carry a much smaller,
but non-vanishing amount of the total energy of the flow.

In terms of describing and predicting the slow, meteorologically and
oceanographically significant flow features, such as mid-latitude storms or
meanders, eddies and rings, the faster waves would seem at first to be more
of a nuisance than a help. Hence, the inspired use of the QG approximation
in early NWP (Chamey et al., 1950), and its continued use in theoretical
studies of long-term behavior (Pedlosky, 1987; Ghil and Childress, 1987).
Hence also the attempt to justify rigorously the QG approximation by the
existence of a slow manifold in the PE system (Leith, 1980; Lorenz, 1980).

Unfortunately, it turns out that the slow manifold does not exist in a
rigorous mathematical sense (Vautard and Legras, 1986), and that inertia-
gravity waves are an inseparable part of the total behavior of the synoptic
scales (Errico, 1982; Lacarra and Talagrand, 1988). In oceanography, global
or basin-wide PE models are necessary in order to account correctly for the
interaction between the thermohaline and the wind-driven circulation (Bryan
and Sarmiento, 1985), and they are generally accepted for the description
and prediction of tropical phenomena (Gill, 1982).

In the process of data assimilation, NWP experience has shown that the
discrepancy between current data, with their random errors, and model first
guess, with its errors, can excite a spuriously large amount of inertia-gravity
waves in a PE model. These fast waves are damped out over 12-24 h, and
have been shown not to affect 24-48 h forecasts substantially (e.g., Bal-
govind et al., 1983). However, in an assimilation scheme without proper,
built-in error estimation, they can lead to a rejection of data at the next
subsynoptic update time, being too different from the first guess (see
discussion in the next section; also Daley (1981) for additional undesirable
features of the fast waves).
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Therefore, a long-standing approach in NWP has been to eliminate
entirely, or reduce as much as possible, the amount of inertia-gravity waves
at initial forecast time. The minimization of the fast-wave energy at initial
time goes by the name initialization in NWP. In other disciplines, initiali-
zation often means just the assignment of initial values, whatever their
properties otherwise, to a forecast field. The word is used in its narrow,
technical NWP meaning throughout this article.

5.2. Initialization and projection

The optimal compromise between statistical minimization of the errors in
the initial state, on the one hand, and dynamical minimization of the fast
components in this state, on the other, is a topic of considerable current
interest in NWP, as witnessed by an entire volume of contributions dedi-
cated to it (Williamson, 1982; see also Ghil, 1980). The relevance to
oceanographic data assimilation is discussed in section 2 of Part II, with
additional results in hand, and in Ghil and Malanotte-Rizzoli (1989).

A reasonable recipe for this compromise can be given in the simple model
(19). In this model, the Rossby waves form a linear subspace, denoted by %
in Fig. 6, and the inertia-gravity waves form a complementary subspace,
denoted by ¢ in the figure.

In the standard formulation of slow manifold theory (Daley, 1980, 1981;
Leith, 1980) the two linear subspaces # and ¥ are presented as orthogonal

Fig. 6. Schematic representation of the slow subspace # of Rossby waves and the fast
subspace ¥ of inertia-gravity waves. Three projections onto % are shown: the parallel
projection I (dash-dotted), the perpendicular projection II , (dashed), and the E-per-
pendicular projection IIg (solid: after Cohn, 1982).
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to each other. This is only the case if the linear system under study is
self-adjoint, in particular if the full governing equations are linearized about
a state of rest. In practice, GFD flows have large shear and linearization
about a particular solid-body rotation is not a good approximation for the
purposes of data assimilation, as we shall see in section 5 of Part Il
Equation (19) has been obtained on purpose by linearization about non-zero
mean flow, and hence the associated linear operator is not self-adjoint.

As a consequence, projection onto the slow subspace # of the state w' or
w? can be carried out in more than one way. The parallel projection IT,
eliminates the fast modes of w without changing the slow ones. The
perpendicular projection operator Il | minimizes the distance between w
and its projection onto %, II | w, in the usual, Euclidean metric of the phase
space. The oblique, or A-perpendicular projection II, minimizes this dis-
tance in a modified metric, with non-negative semi-definite weight matrix
A = 0 (cf. eqn. (18)).

Details about the linear subspaces # and ¥ in the continuous system
(19), as well as in the actual discrete system used in the numerical examples,
can be found in Cohn (1982). The different projections are written down
explicitly there as matrix operators for the discrete system. The projection
used in the following numerical example is the one most appealing physi-
cally, namely the minimum-energy projection, or E-perpendicular projec-
tion, which minimizes the expected energy of the analysis error, II;. In this
special case, the weight matrix A in eqn. (18) will be denoted by E; it is
positive definite, diagonal, and the diagonal entries are, at each grid point,
unity for the velocity components u and v and 1/9 for the geopotential ¢.

5.3. The dynamically modified Kalman filter

With these dynamical facts in mind, we can address the issue of the
compromise between minimum errors and minimum fast waves, by modify-
ing the standard K-filter K}. The modified filter has to minimize the error
functional (18), subject to the constraint that
W ER (30)
at all update times k. It is assumed that wj' € &, i.e., that initialization has

been performed at the outset.
The solution of this constrained minimization problem (Cohn, 1982; Ghil
et al., 1982) is to take for the gain matrix

K,=KI:=II,K} (31)
where II, is the A-orthogonal projection matrix onto 2, defined by

Range [1 =% (32a)
=11 (32b)

(AII)" = AIT (32¢)
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The (dynamically) modified K-filter, or IIK-filter, is the data assimilation
scheme (eqn. (8)) based on the choice of gain matrix K. Notice that IT,,
and therefore KI, actually depend on the weighting matrix A: as opposed to
the standard K-filter (eqn. (17)), one must now choose the error functional
to be minimized.

For any given choice of A, the IIK-filter also has the property that it
minimizes the functional

Jo=E(wt = W) A(w; — %) (33)
subject to the constraint (30), where W, denotes the analyzed field that
would be produced by using the standard K-filter at time k. In fact, we have
w =IIw;} (34)

Thus, the ITK-filter combines the standard K-filter with variational
normal mode initialization (Daley, 1981; Tribbia, 1982), i.e., with variational
projection onto #; W is an objective analysis, wZ is the initialized field, and
the elements of A are the variational weights. The IIK-filter, though,
minimizes not only the A-distance of eqn. (33) between the final, initialized
field w? and the ‘analyzed’ field w?, but also the A-distance of eqn. (18)
between w; and the true field w;, which is a measure of the actual analysis
error.

A particular realization of the estimation process for the standard K-filter
is shown in Fig. 7. Figures 3 and 5 showed results that do not depend on the
particular stochastic realization of initial error, system noise or observational
noise, but follow from the deterministic filtering algorithm (17). In fact, for
a truly linear system the sequences {P,, K,} depend only on
(¥, Hy, Py, Q, R} and not on the state {w,} itself. Thus K, can be
calculated once and for all.

Since we are interested eventually in the non-linear systems of GFD
(section 5 of Part II), this approach was not taken here, and we encounter
for the first time the evolution of the state itself. The behavior of the actual,
rather than expected, r.m.s. estimation error (w;* — w;) is shown in Ghil et
al. (1981, fig. 3). It is not exactly monotone decreasing and exhibits fluctua-
tions, but it follows in broad outline the expected behavior shown in Fig. 3
here.

Notice that the change in solution at observation times is typically larger
at SF, the westernmost observation point, than at NY, the easternmost
point: the forecast at SF has larger errors than the forecast at NY (cf. Fig.
4b), since SF is downwind from the data-sparse ocean, while NY is down-
wind from data-dense land. The solution jumps at the mid-ocean point HA
are quite small, since the weighting coefficients of the K-filter’s gain matrix
decrease rapidly with distance from the observations (see figs. 7 and 8 of
Ghil et al., 1981; not shown here).

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
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Fig. 7. Evolution of the state estimate w'* at three locations, using the standard K-filter and
the conventional observing network. See Fig. 2 and its caption for identification of points. (a)
Zonal velocity u; (b) meridional velocity v; (c) geopotential ¢ (after Ghil et al., 1981).

The overall picture in Fig. 7 is that of slowly evolving, large-amplitude
Rossby waves, with a period of roughly 6 days. Upon these are superim-
posed smaller amplitude, rapidly evolving inertia-gravity waves, excited by
the system noise and the observational noise. The effect of the initializing
ITK-filter on this situation is shown in Fig. 8.

The evolution of the Rossby waves is clearly the same as in the preceding
figure, while the fast waves have been completely eliminated. In particular,
fast waves are no longer excited at update time, even when the analysis w2
differs markedly from the first guess w/. Changing the type of projection to
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IT, or II, does not seem to make too much of a difference in the estimate
(see fig. 10 in Ghil et al., 1981, for II , ; IT; not shown).

At what cost to the estimation error are the fast waves eliminated? It is
obvious that constrained optimization (eqns. (18) and (30)) can only yield a
minimum larger than or equal to the result of unconstrained optimization
(18). In Fig. 9 we see the expected r.m.s. errors for the K-filter and
IIK -filter, side by side.

The excess estimation error of the IIK-filter over the K-filter, for all the
components of the energy, as well as for the total, increases with time in the
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assimilation cycle, but is still quite small in the asymptotic regime at day 10.
| So the loss of accuracy in estimation is not too great. But what is the gain?

As pointed out in section 5.1, inertia-gravity waves are an inseparable
part of the geofluid’s behavior. They are essential in tropical phenomena,
and in fact their suppression in operational NWP practice by non-linear
normal-mode initialization (Daley, 1981) has led to serious estimation errors
in tropical analyses (Kanamitsu, 1981). It turns out that the correct amount
of fast-wave energy can be determined from the observations by using
optimal or nearly-optimal filters (section 4 of Part II). But large errors in the
fast waves are very harmful to the correct estimation of the energetic, slow
waves in an assimilation scheme which is far from truly optimal, such as OI.
Thus initialization, albeit easy, is neither necessary, nor particularly useful
when a nearly optimal data assimilation scheme is implemented, but it is
very helpful as an improvement to the highly suboptimal assimilation
schemes in current operational use (see section 2 of Part II).

6. PRACTICAL CONSIDERATIONS

Section 2 gave a glimpse of the rich history of data assimilation in
meteorology, concluding with a few more-detailed references. A critical

By s
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review of sequential estimation ideas applied to NWP, from Jones (1965) to
Petersen (1976), was given by Ghil et al. (1981, pp. 178-180), and will not be
repeated here. An omission in that review, which was brought to my
attention later, and should be corrected at this point, are the articles of
Epstein (1969) and of Pitcher (1977), who in turn did not mention the
seminal work of Kalman.

Epstein (1969) carried out Monte-Carlo experiments with Lorenz’s (1960)
minimal hydrodynamic system, using a random observing pattern. Pitcher
(1977) used an equivalent-barotropic model and 500 mbar geopotential
heights from about 450 radiosonde stations in the Northern Hemisphere for
3 days in December 1969. These authors worked with deterministic flow
equations, randomizing only over the initial data. Their main conclusion was
the need to take into account random perturbations of the equations of
motion, 1.e., system noise Q, # 0, in order to fit the data more closely and
avoid large discrepancies between true forecast error and apparent forecast
error. This is a result well worth remembering in the use of variational
methods, which assume perfect model dynamics.

To give a better feeling for the gap between the theoretical ideas pre-
sented here and the realities of an operational data assimilation cycle, let us
consider the various characteristics of meteorological data in current use.
These are listed in Table II, while the corresponding horizontal distributions
are shown in Fig. Ala-g of the Appendix.

Each observing system measures a different set of meteorological parame-
ters, with differing horizontal and vertical resolution, continuously or inter-
mittently in time. The random errors indicated are crude estimates of
standard deviations, the corresponding variances being each the sum of an
instrumental and a sampling error variance. Instrumental error is easily
determined in the laboratory, but sampling error depends on the motions of
the fluid, which contain energy at all scales (Balgovind et al., 1983; Thiébaux
and Pedder, 1987, Chapter 6). As we shall see in section 4 of Part II,
determining the observational noise from the data themselves is one of the
most interesting and useful things a nearly optimal filter can do.

This noise, as well as the system noise, changes as the dominant flow
pattern changes. The easiest way to think about large-scale flows as a
stochastically perturbed process, rather than a purely deterministic one, is to
think about the variance associated with a certain mean. The stochastic
perturbations are commonly referred to as subgrid-scale processes. These
change as the flow resolved by the simulation or prediction model changes.

One salient reason to determine observational noise adaptively is to
improve quality control of data. The capital letter acronyms in Table II and
Fig. Al are code names for types of observations transmitted on the Global
Telecommunication System (GTS), as a part of the World Weather Watch
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(WWW). Thus TEMPS are temperature, humidity and wind measurements
from radiosondes, SYNOPS are surface observations from land and SHIPS
are, well, from ships.

Obviously each observation has a natural error, which can be modeled as
random with or without bias, caused by instrumental inaccuracies or by
sampling. These natural errors are smoothed out, more or less optimally, by
statistical or variational methods. But some observations are just plain
wrong, i.e., errors occur in the (human) encoding process or in transmission.
Quality control attempts to eliminate these artificial observations, as well as
so-called outliers, with abnormally large (natural) deviations, without reduc-
ing the number of valid, and hence useful, observations.

Each observation can be checked against a background field, model
forecast or climatology, or against nearby observations of the same type, if
any. The latter kind of check is colloquially referred to as a ‘buddy-check’.
Buddy checks can involve continuity in space or in time, depending on the
observing system in question.

For orientation purposes, a simple, statistical buddy check is described
here, following Gustavsson (1981). Let w;, be an observed value at station i
and time k, and w, , be the interpolated value from the available nearest
neighbors, e.g., two in 1-D, three in 2-D and four in 3-D, if linear interpola-
tion is used. Assuming random, uncorrelated errors, let 002 be the variance of
the (natural) observational errors and o? be the corresponding estimated
mean-square error of interpolation. Then

2= E(w}— Wi,k)z =05 + 0 (35)
The buddy check is based on the algorithm

3, « < Ko = accept w7, (36a)

2, > Ko = reject w7, (36b)

here o =of + 02, and the choice of K is the tricky one. If w{, — W, is

normally distributed, the risk r;, of rejecting a correct value is r;;, = 0.32 for
K=1,r, =004 for K=2,and r, =3 X107 for K = 3. A compromise has
to be reached between the risk of accepting an erroneous value and that of
eliminating a correct one.

Of course outliers are often the physically most interesting ones, and
numerous failed forecasts can be traced back to rejection of a (nearly)
correct observation of an exceptional event. Hence the experience of skilled
forecasters is brought to bear on the cases of greatest doubt, permitting
manual intervention into an otherwise automated process of data transmis-
sion, reception, decoding and assimilation.

An alternative to manual intervention is the use of a non-parametric
method for robust estimation (Efron, 1982). Non-parametric means that no
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a priori assumptions about the distribution of variables, such as normality,
are made. These methods are robust to the presence of outliers, but are
computationally rather expensive. A trade-off in delay and cost between
automatic robust estimation and manual intervention thus depends on
eminently practical considerations.

The way is long from basic principles, however sound, to an actual data
assimilation system. A few more steps along this way are taken in Part II.

Quast-operational data assimilation and forecasting in oceanography has
been initiated for the Gulf Stream system by the Harvard Open Ocean
Modeling Group (Robinson and Leslie, 1985; Robinson et al., 1987). Other
interesting approaches to the estimation problem in oceanography, including
statistical methods, direct insertion, variational methods and control-theoret-
ical methods, are due to Bretherton et al. (1976), Malanotte-Rizzoli and
Holland (1985), Provost and Salmon (1986) and Wunsch (1988). A bridge
between the theory of sequential estimation and of variational methods, on
the one hand, and the practice of data assimilation in oceanography, on the
other, is provided by Miller (1987). His primer can be used with consider-
able advantage by the interested readers of this article as a complementary
testing ground for their understanding. A more elaborate comparison be-
tween data assimilation methods in meteorology and in oceanography will
appear in Ghil and Malanotte-Rizzoli (1988).
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APPENDIX
Data availability in meteorology and oceanography

To measure the distance with respect to availability of data between
physical oceanography and dynamical meteorology let us compare Fig. Al

(a) s o < B, e
S it P
g.r—-—#@\-,;p g 1'}»’5:"\}’1;"‘;';,_ PGGE level II-b data
K P*-‘; ; %ﬁﬁ i NJ}?‘ - 12 GMT © January 1879

(b) (e)
(c) (f)
(d) (g)

Fig. Al. Meteorological observations available during one 12-h period centered at 1200 GMT
9 January 1979. Each panel gives one type of observations, with data type, instrument source
and exact number of soundings for that source at the top left; numbers in parentheses here
are typical of measurements available for a 12-h period: (a) Drifting buoys, surface pressure
p, (270); (b) cloud-drift wind vectors V (two velocity components) from geostationary
satellites, at one of two levels (2250 vectors); (¢) V (two scalars) from aircraft and constant-level
balloons (1100); (d) surface temperature 7;, wind V; and pressure p, (four) from land stations
and ships (3450); (e) temperature T from polar-orbiting satellites (2050 X 5 levels); (f) V (two)
from pilot balloons (660x10); (g) 7, V and humidity g (four scalars) from radio- and
dropsondes (750 X 10) (from Bengtsson et al., 1981).
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Fig. A2. Number of bathythermograph casts per month, 1941-1977. (a) MBTs; (b) XBTs
(after Levitus, 1982).

with Figs. A2 and A3. Figure Al represents the data typically available at
present over one synoptic period, i.e., over 12 h, for the global atmosphere.
Figures A2 and A3 represent the distribution in space and time of all
oceanographic data up to 1978, archived by the National Oceanographic
Data Center (NODC), Washington, DC.

In Fig. Al, the total number of scalar measurements of the atmospheric
mass and velocity fields over 12 h is of the order of 10° (Ghil, 1986). This
number is essentially adequate for a description of large-scale atmospheric
fields, by using the methods of data assimilation into weather prediction
models that are currently operational in major weather bureaux. The test of
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Fig. A3. Distribution of temperature observations at standard levels in NODC archives. (a)
Station data (SD); (b) MBTs; (c) XBTs. Each panel shows the distribution with depth over
the globe (solid), Northern Hemisphere (dotted) and Southern Hemisphere (dashed). Notice
that both the ordinate and the abscissa in each panel have different scales (after Levitus,

1982).

adequacy here is relatively accurate prediction for a few days, or a few
synoptic periods.

The total number of archived oceanographic mass-field measurements
over a period of 80 years or so is of the order of 107: (a) temperature T and
salinity S’ from Nansen casts at about 500000 hydrographic stations; (b) T
from about 785 000 mechanical bathythermograph (MBT) and about 300 000
expendable bathythermograph (XBT) soundings, each with its own vertical
distribution of individual measurements (Levitus, 1982). The situation for
the oceans’ velocity field is rather worse than for the mass field.

On the face of it, taking the number of atmospheric observations as the
yardstick, there are 10? times more oceanic observations for a period of 10°
times longer, i.e., 10° times fewer observations. This first estimate has to be
corrected by allowing for the different time and space scales of the basic
phenomena to be observed, and predicted, in the atmosphere and in the
ocean. Let us take these to be mid-latitude synoptic eddies, often called
mesoscale eddies in oceanography.

In the ocean the Rossby radius of deformation, which is the characteristic
length scale, is about 102 km, versus 10° km in the atmosphere, thus
requiring an observational density 10? times higher. This is only partially
compensated by the longer characteristic time in the oceans, requiring a
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frequency of observation 10 times lower than in the atmosphere. Hence the
corrected estimate is of 10* times fewer observations in the ocean.

Not only have oceanographers been used to so few observations, but these
are even more unevenly distributed in space and time than in meteorology.
Figure A2 shows the distribution in time of MBT and XBT casts. The XBT
instrument is more accurate and convenient than the MBT, which it has
essentially replaced. Unfortunately, the number of XBT casts has actually
decreased, and there is also a lag in their entering the NODC files.

The distribution of observations in space, horizontally (not shown) and
with depth (Fig. A3), is also very uneven. Most data are in the Northern
Hemisphere (NH: dotted line in Fig. A3), and there is further concentration
of data in western boundary currents and along shipping lanes. The amount
of data below the permanent thermocline is a tiny fraction of the total, and
decrease of information with depth is quite rapid in the upper ocean as well.

In contrast to this situation, valid until just a few years ago, there are
already about 40000 satellite sea-surface temperature measurements daily.
In addition, in the early 1990s, about 50000 sea-surface height measure-
ments and 180000 surface wind vectors will be available daily (Halpern,
1987). Thus the daily number of measurements in oceanography will become
comparable to that currently available in meteorology. Even so, two prob-
lems remain: first, this is still a factor of 10 smaller, due to the difference in
characteristic scales; and second, the additional data mentioned are all
surface data.

It is hoped that the number of vertical soundings will increase somewhat,
due to acoustic-tomography arrays and other advanced systems. But it is
unlikely that this increase will be anywhere as dramatic as that for surface
data.
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