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Main issues

» The solid earth stays put to be observed,

» Two types of information:
- direct — observations, and
- indirect — dynamics (from past observations);
both have
- Combine the two in (an) optimal way(s)
- Advanced data assimilation methods provide such ways:
- sequential estimation — the Kalman filter(s), and
- control theory — the adjoint method(s)

- The two types of methods are essentially equivalent for simple
linear systems (the )




Main issues (continued)

Their performance differs for large nonlinear systems in:

Study optimal combination(s), as well as improvements over currently
operational methods ( ).




The (extended) Kalman Filter (EKF)

(Extended) Kalman Filter (EKF)

X! (ti1) = My[x'(8)] + n(t;)
Qidij = E(n;n))

AX,/',(L = X,/',a, _xt
Pf;a‘ = E[{Axf’a’)(Axf’a)T]
trP/¢ = global error

Stage 1: Prediction (deterministic)

xf(t;) = M1 [x*(t;1)]
P/(t;) = M; 1Pt _)M! |+ Q(t;_1)

y) = H[xHt;)] + ¢
Rié,;j = E(SZ’E?)

d= y? — H;[x(;)] - innovation vector

Stage 2: Update (Probabilistic)

x4t;) = x/ (t;) + Ki(y? — Hy[x/ (1))

PY(t;) = (I - K;H,)P/(t;)

K; =P/(t;)H[H;P/(t;H! + R;]™!
subject to dgtrP* =0
M and H are the linearizations of M and H




Basic concepts: barotropic model

Shallow-water equations in 1-D, linearized about (U,0,®), fU = - ®
U=20ms™", f=10"%s"1, ® = gH, H= 3 km.

y

u,+ Uu, +¢,— fr=>0
v, + U, + fu=0
¢+ Up, + Qu, — fUr=10

PDE system discretized by finite differences, periodic B. C.
H,: observations at synoptic times, over land only.
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Ghil et al. (1981), Cohn & Dee (Ph.D. theses, 1982 & 1983), etc.




Conventional network
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Advecuon Of {6h fcst} - {conventional (NoSat)}
iInformation '

Upper panel (NoSat):
Errors advected q)300
off the ocean

A o
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Lower panel (Sat):

Errors drastically reduced,
as info. now comes in,

off the ocean
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Error components in forecast—analysis cycle

f a a
D= PT O+ AH2AP" + 8)

. . The relative contributions to
first—guess  analysis id. twins  modeling
error error error error error growth of

growth )
- analysis error
 intrinsic error growth




Assimilation of observations: Stability considerations

Free-System Dynamics (sequential-discrete formulation): Standard breeding

forecast state; model Corres

: : : ponding — a
mtecgrapon from a previous n+1 M(X ) perturbative (tangent 5Xn+1 M(an
analysis

linear) equation

(sequential-discrete formulation):

If observations are available and we assimilate them:

Evolutive equation of the

system, subject to forcing by XZ+1 = [I — KH O]M(XZ) + KYZH

the assimilated data

Corresponding perturbative (tangent linear) a a
equation, if the same observations are 6Xn+1 = I — KH (an
assimilated in the perturbed trajectories as in

the control solution

0 The matrix (I = KH) is expected, in general, to have a stabilizing effect;
0 the free-system instabilities, which dominate the forecast step error growth,
can be reduced during the analysis step.

Joint work with A. Carrassi, A. Trevisan & F. Uboldi




Stabilization of the forecast—assimilation system — |

- Periodic 40-variable Lorenz (1996) model;

- Assimilation algorithms: replacement (Trevisan & Uboldi, 2004), replacement + one adaptive
obs’n located by multiple replication (Lorenz, 1996), replacement + one adaptive obs’n located by
BDAS and assimilated by AUS (Trevisan & Uboldi, 2004).
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AUS: Assimilation in the
Unstable Subspace

Trevisan & Uboldi (JAS, 2004)




Stabilization of the forecast—assimilation system — Il

Assimilation experiment with the
40-variable Lorenz (1996) model

Spectrum of Lyapunov exponents:

Dark blue: AUS with 3-hr updates
Purple: AUS with 2-hr updates
Light blue: AUS with 1-hr updates

Carrassi, Ghil, Trevisan & Uboldi,
2007, sub judice

Lyapunov vectors
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Stabilization of the forecast—assimilation system — I/

- 64-longitudinal x 32-latitudinal x 5 levels periodic channel QG-model (Rotunno & Bao, 1996)

- Perfect-model assumption

- Assimilation algorithms: 3-DVar (Morss, 2001); AUS (Uboldi et al., 2005; Carrassi et al., 2006)

Observational forcing = Unstable subspace reduction

Spectrum of Lyapunov exponents

—s— free
—— 3DVar-BDAS
—— AUS-BDAS

» Free System
Leading exponent:
Aoy = 0.31 days™;
Doubling time = 2.2 days;
Number of positive exponents:
N+ = 24;
Kaplan-Yorke dimension = 65.02.

» 3-DVar-BDAS
Leading exponent:
Ao = 0.002 days;

Kaplan-Yorke dimension = 1.1

>» AUS-BDAS
Leading exponent:
Moy = — 0.52x1072 days™

m
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Parameter Estimation

a) Dynamical model
dx/dt= M(x, n) + n(d)
y° =H(x) +&(f)
Simple (EKF) idea — augmented state vector
dw/dt=0, X=(xT, u")’

L(pn = wm(d), L — AR(MA) model, p = (py, P, ---- P

Examples: 1) Dee et al. (IEEE, 1985) — estimate a few parameters in the
covariance matrix Q = E(n, n'); also the bias <n> = En;

2) POPs - Hasselmann (1982, Tellus); Penland (1989, MWR; 1996, Physica D);
Penland & Ghil (1993, MIWR)

3) dx/dt = M(x, u) + n: Estimate both M & Q from data (Dee, 1995, QJ), Nonlinear
approach: Empirical mode reduction (Kravtsov et al., 2005, Kondrashov et al.,
2005)




Estimating noise — |
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estimated
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Dee et al. (1985, IEEE Trans. Autom.
Control, AC-30)

ALPHA (3) |

Poor convergence for Q,_,?




Estimating noise — ||

Same choice of a(0), Q;, .‘ L
and R, but e

1 08 0] estimated

081 0 |
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Dee et al. (1985, IEEE Trans. Autom.
Control, AC-30)

Good convergence for




Parameter Estimation

a) Dynamical model
dx/dt= M(x, u) + n(?)
¥ = H(x) + ()

Simple (EKF) idea — augmented state vector
du/dt=0, X=(xT, u")T




Sequential parameter estimation

o ° ” method — uncertain parameters are treated as
additional state variables.

e Example: one unknown parameter u

® The parameters are not directly observable, but the cross-covariances
drive parameter changes from innovations of the state:

_ f gHT
) < (7

T
Pl H

e Parameter estimation is always a even if the model is
linear in terms of the model state: use Extended Kalman Filter (EKF).




Parameter estimation for coupled O-A system

Intermediate coupled model (ICM: Jin
& Neelin, JAS, 1993)

Estimate the state vector W= (T, h,
u, v), along with the coupling
parameter u and surface-layer
coefficient 6. by assimilating data
from a single meridional section.
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Coupled O-A Model (ICM) vs. Observations

SSTA for westward—propagating regime:és = 0.8, u=0.56

2005
2000
1995¢
1990
1985¢

130E 180 130W 80W

SSTA for delayed-oscillator regime:&‘)S =0,u=0.76
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1990

1985} —
S —
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SSTA in NCAR-NCEP Reanalysis
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Convergence of Parameter Values — |

a) Ocean-atmosphere coupling coefficient

I I I I

Estimate |
- = = True
Error

25

Estimate
= = = True
Error

15
Time (years)

|dentical-twin experiments




Convergence of Parameter Values

| !
1990 1995

b) Iterative u estimate

1985 1990 1995

c) lterative 68 estimate

Time (years)

Real SSTA data




EKF results with and w/o parameter estimation

SSTA from EKF with fixedu = 0.76, 68 =0

180 130W

SSTA from EKF with u and 63 estimation
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SSTA difference of EKF (u, 68) estimation and NCEP-NCAR
2005

2000
1995¢
1990
19851

130E 180 130W
Longitude




How data assimilation fills the ozone hole: Model information fills in the

gaps in stratospheric ozone concentration levels between satellite tracks
Ozone ot 10hPo Q20000 22-Sep—2002

Erwizat Azsimilation

Oata Aassimilation Reaesarch Centre
MIPAS data |:|::] E=a 2002

DARC, Reading, UK (courtesy Bill Lahoz)




Space physics data

Space platforms in Earth’s magnetosphere




The December 2004
Sumatra—Indian Ocean Tsunami




Computational advances

a) Hardware

- more computing power (CPU throughput)
- larger & faster memory (3-tier)

- better numerical implementations of algorithms

- automatic adjoints

- block-banded, reduced-rank & other sparse-matrix algorithms
- better ensemble filters

- efficient parallelization, ....

How much DA vs. forecast?
- Design integrated observing—forecast—assimilation systems!




Observing system design

» Need (independent) observations than d-o-fto be tracked:

- “features” (Ide & Ghil, 1997a, b, DAO);
- instabilities (Todling & Ghil, 1994 + Ghil & Todling, 1996, MIWR);
- trade-off between mass & velocity field (Jiang & Ghil, JPO, 1993).
» The cost of advanced DA is than that of instruments & platforms:
- at best use DA instead of instruments & platforms.
- at worst use DA to determine which instruments & platforms
(advanced OSSE)
Use , if forward modeling is possible (observing operator H)
- satellite images, 4-D observations;
- pattern recognition in observations and in phase-space statistics.




Concluding remarks

Theoretical concepts can play a useful role in devising better
practical algorithms, and vice-versa.

Judicious choices of observations and method can
stabilize the forecast-assimilation cycle.
Trade-off between cost of observations and of data assimilation.
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practical algorithms, and vice-versa.

Judicious choices of observations and method can

stabilize the forecast-assimilation cycle.

Trade-off between cost of observations and of data assimilation.

Assimilation of ocean data in the coupled O-A system is useful.

They help estimate both ocean and coupling parameters.
Changes in estimated parameters compensate for model imperfections.




Concluding remarks

Theoretical concepts can play a useful role in devising better
practical algorithms, and vice-versa.

Judicious choices of observations and method can

stabilize the forecast-assimilation cycle.

Trade-off between cost of observations and of data assimilation.

Assimilation of ocean data in the coupled O-A system is useful.

They help estimate both ocean and coupling parameters.
Changes in estimated parameters compensate for model imperfections.

Novel areas of application: space physics, shock waves in solids,
laboratory experiments in fluids, tsunamis, macroeconomics
Novel approaches and methods: hard- and software,
data-adaptive observations

Next decade in data assimilation should be interesting!
http://www.atmos.ucla.edu/tcd/




I.B

Handelsman (5

THE COMPLETE CARTOONS OF THE NEW YORKER

ksl

“Mss Peterson, may I go home? I can’t assimilate
any more data today.”

Return to Main Menu »
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The main products of estimation

- Filtering (F) — “video loops”

- Smoothing (5) — full-length feature “movies”

« Prediction (P) —= NWP, ENSO

N. Wiener (1949, MIT Press)

Distribute all of this over the Web to
« scientists, and the
- “person in the street”
(or on the information
superhighway).

In a general way:




Evolution of DA -1

TABLE I. CHARACTERISTICS OF DATA ASSIMILATION SCHEMES IN OPERATIONAL USE AT THE
END OF THE 1970s*
S ——————

Organization Operational analysis

or country methods Analysis area  Analysis/forecast

Australia Successive correction SH¢ 12 hr
method (SCM)
Variational blending Regional 6 hr
techniques
Multivariate 3-D statistical NH* 6 hr
interpolation Regional (3 hr for the surface)
SCM; wind-field and mass- NH 6 hr
field balance through first
guess
Multivariate 3-D statistical Regional
interpolation
SCM. Upper-air analyses NH 12hr
were built up, level by level, (6 hr for the surface)
from the surface
Variational height/wind Climatology only as
adjustment preliminary fields
SCM NH 12 hr
Height-field analyses were Regional
corrected by wind analyses
Univariate 3-D statistical NH 12 hr
interpolation
Variational height/wind Regional 3hr
adjustment
United Kingdom  Hemispheric orthogonal
polynomial method
Univariate statistical Global
interpolation (repeated
insertion of data)
U.S.A, Spectral 3-D analysis Global
Multivariate 3-D statistical Global
interpolation
USSR 2-D statistical NH
interpolation
ECMWF? Multivariate 3-D statistical Global
interpolation

F.R. Germany

“ After Gustafsson (1981).

¥ European Centre for Medium Range Weather Forecasts.

€ 2-D is in a horizontal plane.

¢ Southern Hemisphere and Northern Hemisphere, respectively.

Transition from “early” to “mature”
phase of DA in NWP:

— no Kalman filter (Ghil et al.,
1981(%))

— no adjoint (Lewis & Derber,
Tellus, 1985);
Le Dimet & Talagrand (7ellus,
1986)

(*) Bengtsson, Ghil & Kéllén (Eds., 1981),
Dynamic Meteorology:

Data Assimilation Methods.

M. Ghil & P. M.-Rizzoli (Adv. Geophys.,
1991).




Evolution of DA - i

TaBLE IV, DUALITY RELATIONSHIPS BETWEEN STOCHASTIC ESTIMATION AND DETERMINISTIC
CONTROL®

=
Caut te:
A. Continuous (linear) Kalman Filter a u I O n a ry n o e "
Mevsoemen: Mode e Homi o b0 NIORO) “Pantheistic” view of DA:

State estimation Wwo(t) = F(yw™(t) + K(O)[w°() — HOw*(1)], w0) = wj
Ertor covariance P(t) = F()P(t) + PW)FT(t) + G(OQ(OGT() A A .
propagation —KMOROK@), PO)=PF, Va. I’I at | O n al = K F y

(Riccati Equation)

Kal Gai K(t) = POH(OR™'()
Iﬁjt::7:on<:;:ons E[:v‘(O)] ;w:,,t I;{[w'(O) — WAI[W'0) — wh]T} = P, 3' & 4' D Var s 3' & 4'D PSAS .
Assumptions R™}(1) exists

erformance Index o~ Wit — win Fashionable to claim it’s all the same

B. Continuous (linear) Optimal Control

‘1 .
System Model Wwit) = Foyw(e) + H(u(e) b Ut It S n Ot .

Measurement Model wO(t) = w(t) (all system variables are measured)

Performing control (1) = —K(O)w(r) I . I

Mcrm;nc:;l;pagacion ‘}‘_’(1) = Hﬁ'f(:v)vﬁ(z) - ByF() — 0 + POAMR® G Od IS IN eve ryt h In g y
(Riccati Equation) 5 . o

Control Gain K@) = R-YOH@OP@) H -

Terminal conditions wit;) =0 b Ut th e I S I n th e

P() = 0

Cost function J[w,u] = wiGw + fr WIOQOWE) + wOR(u(] dr M . G h I l & P . M - R iZZOl I
]
C. Estimation-Control Duality (A dV. Ge Ophy .y 1 99 1 ) .

Estimation Control

te initial time t; final time

w(t) unobservable state variable of random w(t) observable state variable to be
process controlled

wY(¢) random observations u(t) deterministic control

F{e) dynamic matrix FT(t) dynamic matrix

Q) covariance matrix for the model errors 0(t) quadratic matrix defining acceptable

errors on model variables

H{1) effect of observations on state variables H(2) effect of control on state variables

Pty covariance of estimation error under B(r) quadratic performance under
optimization optimization

K({t) weighting on observation for optimal K{t) weighting on state for optimal control

estimation

“ (A), Kalman filter as the optimal solution for the former problem; (B), optimal solution for
the latter problem; (C), equivalences between the two (after Kalman, 1960, and Gelb, 1974,
Sestion 9.5; courtesy of R. Todling).



The DA Maturity Index of a Field

- Pre-DA: few data, poor models

e The . Science is , don’t bother me with the facts!
» The observer/experimentalist: Don’t ruin my beautiful data with
your lousy

- Early DA:

 Better data, so-so models.
o Stick it (the obs’ns) in — direct insertion, nudging.

 Advanced DA:

 Plenty of data, fine models.
« EKF, 4-D Var (2" duality).

» Post-industrial DA:
(Satellite) images --> (weather) forecasts, climate “movies” ...




Conclusion

®* No observing system without data assimilation and no assimilation
without dynamics?

* Quote of the day: “You cannot step into the same river® twicec”
(Heracleitus, Trans. Basil. Phil. Soc. Miletus, cca. 500 B.C.)

aof state and errors

bMeandros
¢ “You cannot do so even once” (subsequent development
of “flux” theory by Plato, cca. 400 B.C.)

Ta tavra peew = Everything flows




