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Outline
• Data in meteorology and oceanography

- in situ & remotely sensed
• Basic ideas, data types, & issues

- how to combine data with models
- transfer of information

- between variables & regions
- stability of the forecast–assimilation cycle
- filters & smoothers

• Parameter estimation
- model parameters
- noise parameters – at & below grid scale

• Subgrid-scale parameterizations
- deterministic (“classic”)
- stochastic – “dynamics” & “physics”

• Novel areas of application
- space physics
- shock waves in solids
- macroeconomics

• Concluding remarks



Main issues
• The solid earth stays put to be observed, the  atmosphere, the

oceans, & many other things, do not.
• Two types of information:
           - direct → observations, and

       - indirect → dynamics (from past observations);
   both have errors.

• Combine the two in (an) optimal way(s)
• Advanced data assimilation methods provide such ways:

- sequential estimation → the Kalman filter(s), and
- control theory → the adjoint method(s)

• The two types of methods are essentially equivalent for simple
linear systems (the duality principle)



Main issues (continued)
• Their performance differs for large nonlinear systems in:

- accuracy, and
- computational efficiency

• Study optimal combination(s), as well as improvements over currently
operational methods (OI, 4-D Var, PSAS, EnKF).



The (extended) Kalman Filter (EKF)



Basic concepts: barotropic model
Shallow-water equations in 1-D, linearized about (U,0,Φ), fU = – Φy

U = 20 ms–1, f = 10–4s–1, Φ = gH, H ≈ 3 km.

PDE system discretized by finite differences, periodic B. C.
Hk: observations at synoptic times, over land only.

Ghil et al. (1981), Cohn & Dee (Ph.D. theses, 1982 & 1983), etc.



Conventional network

(i) “good” observations
R << Q ⇒ P∞ ≈ R;

       (ii) “poor” observations
R >> Q ⇒ P∞ ≈ Q/(1 – Ψ2);

P∞ = QR/[Q + (1 – Ψ2)R]

       (iii) always  (provided Ψ2  < 1)
P∞  ≤ min {R, Q/(1 – Ψ2)}.

(a) Q = 0 ⇒ P∞ = 0

(b) Q ≠  0 ⇒ (i), (ii) and (iii):

Relative weight of
observational vs.
model errors



b) {“first guess”} - {FGGE
analysis}

Halem, Kalnay, Baker & Atlas 

(BAMS, 1982) 

φ300

 {“first guess”} - {FGGE analysis}

{6h fcst} - {conventional (NoSat)}Advection of
information

φ300
Upper panel (NoSat):
Errors advected 
off the ocean

Lower panel (Sat):
Errors drastically reduced,
as info. now comes in,
off the ocean
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Error components in forecast–analysis cycle

The relative contributions to
error growth of
• analysis error
• intrinsic error growth
• modeling error

(stochastic?)



Assimilation of observations: Stability considerations
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forecast state; model
integration from a previous
analysis

C o r r e s p o n d i n g
perturbative (tangent
linear) equation

If observations are available and we assimilate them:
Evolutive equation of the
system, subject to forcing by
the assimilated data

Corresponding perturbative (tangent linear)
equation, if the same observations are
assimilated in the perturbed trajectories as in
the control solution

 The matrix (I – KH) is expected, in general, to have a stabilizing effect;
 the free-system instabilities, which dominate the forecast step error growth,
    can be reduced during the analysis step.

Joint work with A. Carrassi, A. Trevisan & F. Uboldi

Free-System Dynamics (sequential-discrete formulation): Standard breeding

Observationally Forced System Dynamics (sequential-discrete formulation): BDAS



Stabilization of the forecast–assimilation system – I

Assimilation experiment with a low-order chaotic model
- Periodic 40-variable Lorenz (1996) model;
- Assimilation algorithms: replacement (Trevisan & Uboldi, 2004), replacement + one adaptive
obs’n located by multiple replication (Lorenz, 1996), replacement + one adaptive obs’n located by
BDAS and assimilated by AUS (Trevisan & Uboldi, 2004).

Trevisan & Uboldi (JAS, 2004)

BDAS: Breeding on the Data
Assimilation System
AUS: Assimilation in the
Unstable Subspace



Stabilization of the forecast–assimilation system – II

Assimilation experiment with the
40-variable Lorenz (1996) model
Spectrum of Lyapunov exponents:
Red: free system
Dark blue: AUS with 3-hr updates
Purple: AUS with 2-hr updates
Light blue: AUS with 1-hr updates

Carrassi, Ghil, Trevisan & Uboldi,
2007, sub judice



Stabilization of the forecast–assimilation system – III

Observational forcing ⇒ Unstable subspace reduction

➤ Free System
 Leading exponent:

λmax ≈ 0.31 days–1;
 Doubling time ≈ 2.2 days;
 Number of positive exponents:

N+ = 24;
 Kaplan-Yorke dimension ≈ 65.02.

➤ 3-DVar–BDAS
  Leading exponent:
             λmax ≈ 0.002 days–1;
 Kaplan-Yorke dimension ≈ 1.1

➤ AUS–BDAS
 Leading exponent:
            λmax ≈ – 0.52x10–3 days–1

Assimilation experiment with an intermediate atmospheric circulation model
- 64-longitudinal x 32-latitudinal x 5 levels periodic channel QG-model (Rotunno & Bao, 1996)
- Perfect-model assumption
- Assimilation algorithms: 3-DVar (Morss, 2001); AUS (Uboldi et al., 2005; Carrassi et al., 2006)
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Parameter Estimation
a) Dynamical model

dx/dt = M(x, µ) + η(t)
yo = H(x) + ε(t)
Simple (EKF) idea – augmented state vector
dµ/dt = 0, X = (xT, µT)T

b) Statistical model
L(ρ)η = w(t), L  – AR(MA) model, ρ = (ρ1, ρ2, …. ρM)
Examples: 1) Dee et al. (IEEE, 1985) – estimate a few parameters in the
covariance matrix Q = E(η, ηT); also the bias  <η> = Eη;
2) POPs - Hasselmann (1982, Tellus); Penland (1989, MWR; 1996, Physica D);
Penland & Ghil (1993, MWR)
3) dx/dt = M(x, µ) + η: Estimate both M & Q from data (Dee, 1995, QJ), Nonlinear
approach: Empirical mode reduction (Kravtsov et al., 2005, Kondrashov et al.,
2005)

! 



Estimating noise – I

Q1 = Qslow ,  Q2 = Qfast ,  Q3 =0;
 R1 = 0,  R2 = 0,  R3 =R;
Q = ∑ αiQi; R = ∑ αiRi ;
α(0) = (6.0, 4.0, 4.5)T;
Q(0) = 25*I.

Dee et al. (1985, IEEE Trans. Autom.
Control, AC-30)

α1

α2

α3

estimated

true (α =1)

Poor convergence for Qfast?



Estimating noise – II

 Same choice of α(0),  Qi ,
 and Ri but

      1    0.8   0 
Θ(0) = 25 *0.8  1    0  

       0    0    1  

Dee et al. (1985, IEEE Trans. Autom.
    Control, AC-30)

estimated

true (α = 1)

Good convergence for  Qfast!

α1

α2

α3



Parameter Estimation
a) Dynamical model

dx/dt = M(x, µ) + η(t)
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Kondrashov et al., 2005)

! 



Sequential parameter estimation
• “State augmentation” method – uncertain parameters are treated as

additional state variables.
• Example: one unknown parameter µ

• The parameters are not directly observable, but the cross-covariances
drive parameter changes from innovations of the state:

• Parameter estimation is always a nonlinear problem, even if the model is
linear in terms of the model state: use Extended Kalman Filter (EKF).



Parameter estimation for coupled O-A system
• Intermediate coupled model (ICM: Jin

& Neelin, JAS, 1993)
• Estimate the state vector W = (T’, h,

u, v), along with the coupling
parameter µ and surface-layer
coefficient δs by assimilating data
from a single meridional section.

• The ICM model has errors in its initial
state, in the wind stress forcing & in
the parameters.

• M. Ghil (1997, JMSJ); Hao & Ghil
(1995, Proc. WMO Symp. DA Tokyo);
Sun et al. (2002, MWR).

• Current work with D. Kondrashov,
J.D. Neelin, & C.-j. Sun.

Forecast using wrong µ

Reference solution Assimilation result

Forecast using wrong µ and δs

Reference solution Assimilation result



Coupled O-A Model (ICM) vs. Observations



Convergence of Parameter Values – I

Identical-twin experiments



Convergence of Parameter Values – II

Real SSTA data



EKF results with and w/o parameter estimation



How data assimilation fills the ozone hole: Model information fills in the
gaps in stratospheric ozone concentration levels between satellite tracks

DARC, Reading, UK (courtesy Bill Lahoz)



Space physics data

Space platforms in Earth’s magnetosphere



The December 2004
Sumatra–Indian Ocean Tsunami



Computational advances

a) Hardware
- more computing power (CPU throughput)
- larger & faster memory (3-tier)

b) Software
- better numerical implementations of algorithms
- automatic adjoints
- block-banded, reduced-rank & other sparse-matrix algorithms
- better ensemble filters
- efficient parallelization, ….

How much DA vs. forecast?
- Design integrated observing–forecast–assimilation systems!

! 



Observing system design

➤ Need no more (independent) observations than d-o-f to be tracked:
- “features” (Ide & Ghil, 1997a, b, DAO);
- instabilities (Todling & Ghil, 1994 + Ghil & Todling, 1996, MWR);
- trade-off between mass & velocity field (Jiang & Ghil, JPO, 1993).

➤ The cost of advanced DA is much less than that of instruments & platforms:
- at best use DA instead of instruments & platforms.
- at worst use DA to determine which instruments & platforms
  (advanced  OSSE)

➤ Use any observations, if forward modeling is possible (observing operator H)
- satellite images, 4-D observations;
- pattern recognition in observations and in phase-space statistics.

! 



Concluding remarks
• Theoretical concepts can play a useful role in devising better
     practical algorithms, and vice-versa.
• Judicious choices of observations and method can
     stabilize the forecast-assimilation cycle.
• Trade-off between cost of observations and of data  assimilation.
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•   Assimilation of ocean data in the coupled O–A system is useful.
•   They help estimate both ocean and coupling parameters.
•   Changes in estimated parameters compensate for model imperfections.



Concluding remarks
• Theoretical concepts can play a useful role in devising better
     practical algorithms, and vice-versa.
• Judicious choices of observations and method can
     stabilize the forecast-assimilation cycle.
• Trade-off between cost of observations and of data  assimilation.

•   Assimilation of ocean data in the coupled O–A system is useful.
•   They help estimate both ocean and coupling parameters.
•   Changes in estimated parameters compensate for model imperfections.

•   Novel areas of application: space physics, shock waves in solids,
    laboratory  experiments in fluids, tsunamis, macroeconomics
•   Novel approaches and methods: hard- and software,
    data-adaptive observations
•   Next decade in data assimilation should be interesting!
     http://www.atmos.ucla.edu/tcd/





General references
Bengtsson, L., M. Ghil and E. Källén (Eds.), 1981. Dynamic Meteorology: Data
Assimilation Methods, Springer-Verlag, 330 pp.

Daley, R., 1991. Atmospheric Data Analysis. Cambridge Univ. Press, Cambridge, U.K.,
460 pp.

Ghil, M., and P. Malanotte-Rizzoli, 1991. Data assimilation in meteorology and
oceanography. Adv. Geophys., 33, 141–266.

Bennett, A. F., 1992. Inverse Methods in Physical Oceanography. Cambridge Univ.
Press, 346 pp.

Malanotte-Rizzoli, P. (Ed.), 1996. Modern Approaches to Data Assimilation in Ocean
Modeling. Elsevier, Amsterdam, 455 pp.

Wunsch, C., 1996. The Ocean Circulation Inverse Problem. Cambridge Univ. Press,
442 pp.

Ghil, M., K. Ide, A. F. Bennett, P. Courtier, M. Kimoto, and N. Sato (Eds.), 1997. Data
Assimilation in Meteorology and Oceanography: Theory and Practice, Meteorological
Society of Japan and Universal Academy Press, Tokyo, 496 pp.

Perec, G., 1969: La Disparition, Gallimard,Paris.



Reserve slides



The main products of estimation(*)

• Filtering (F) – “video loops”
• Smoothing (S) – full-length feature “movies”
• Prediction (P) – NWP, ENSO

Distribute all of this over the Web to
•  scientists, and the
• “person in the street”
   (or on the information
   superhighway).

In a general way:  Have fun!!!

(*) N. Wiener (1949, MIT Press)



Evolution of DA – I

Transition from “early” to “mature”
phase of DA in NWP:
– no Kalman filter (Ghil et al.,

1981(*))
– no adjoint (Lewis & Derber,

Tellus, 1985);
Le Dimet & Talagrand (Tellus,
1986)

(*) Bengtsson, Ghil & Källén (Eds., 1981),
Dynamic Meteorology:
Data Assimilation Methods.

M. Ghil & P. M.-Rizzoli (Adv. Geophys.,
1991).



Evolution of DA – II

 Cautionary note:
“Pantheistic” view of DA:
• variational ~ KF;
• 3- & 4-D Var ~ 3- & 4-D PSAS.
Fashionable to claim it’s all the same

but it’s not:
• God is in everything,
• but the devil is in the details.

M. Ghil & P. M.-Rizzoli
(Adv. Geophys., 1991).



The DA Maturity Index of a Field

        (Satellite) images --> (weather) forecasts, climate “movies” …

• The theoretician: Science is truth, don’t bother me with the facts!
• The observer/experimentalist: Don’t ruin my beautiful data with
   your lousy model!!

• Pre-DA: few data, poor models

• Early DA:
• Better data, so-so models.
• Stick it (the obs’ns) in – direct insertion, nudging.

• Advanced DA:
• Plenty of data, fine models.
• EKF, 4-D Var (2nd duality).

• Post-industrial DA:



Conclusion
• No observing system without data assimilation and no assimilation
   without dynamicsa

• Quote of the day: “You cannot step into the same riverb twicec”
(Heracleitus, Trans. Basil. Phil. Soc. Miletus, cca. 500 B.C.)

 aof state and errors
bMeandros
c “You cannot do so even once” (subsequent development
of “flux” theory by Plato, cca. 400 B.C.)
Τα παντα ρεει = Everything flows


