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An empirical stochastic model of sea-surface temperature 
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This study employs NASA’s recent satellite measurements of sea-surface temperature 

(SST) and sea-level wind (SLW) with missing data filled-in by Singular Spectrum Analysis 

(SSA), to construct empirical models that capture both intrinsic and SST-dependent 

aspects of SLW variability. The model construction methodology uses a number of 

algorithmic innovations that are essential in providing stable estimates of model’s 

propagator. The best model tested herein is able to faithfully represent the time scales and 

spatial patterns of anomalies associated with a number of distinct processes. These 

processes range from the daily synoptic variability to interannual signals presumably 

associated with oceanic or coupled dynamics. Comparing the simulations of an SLW model 

forced by the observed SST anomalies with the simulations of an SLW-only model provides 

preliminary evidence for the climatic behavior characterized by the ocean driving the 

atmosphere in the Southern Ocean region.
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1. Introduction

a. Motivation

This study addresses aspects of ocean–atmosphere interaction over the Southern Ocean using 

measurements provided by satellite sensors. Our objective is to quantitatively describe and 

analyze co-variability of sea-surface temperature (SST) and sea-level wind (SLW) in this region, 

by developing inverse stochastic models that are derived directly from the remotely sensed data. 

Empirical models of potentially SST-dependent SLW variability can help analyze the coupled 

climate dynamics of the Southern Ocean, especially when combined with oceanic General 

Circulation Models (GCMs).

Climate variability over the Southern Ocean is likely to be of global significance, due to 

this ocean's special role in linking the Atlantic, Pacific, and Indian basins. However, progress in 

understanding the dynamics of large-scale air–sea coupling over the Southern Ocean has been 

slow, largely due to the very low density of in situ measurements in this region. Recently 

launched NASA satellites provide accurate high-resolution global measurements of important 

climatic variables such as SST and SLW. These global fields now permit the construction of 

empirical air–sea interaction models for the Southern Ocean. Despite improved data coverage in 

the region, estimating the propagator of the above mentioned statistical models remains an 

ambitious and challenging task, since 1) there are still missing data due to the presence of strong 

winds or heavy rains, and 2) such a model has to have an unprecedentedly large number of 

degrees of freedom, due to high-dimensional nature of global-scale air–sea interaction. The 

model construction thus requires major algorithmic revisions and gap-free datasets, which we 

develop and describe in detail below. 
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b. Background

The Southern Ocean is the region south of roughly 30o S that includes the Antarctic Circumpolar 

Current (ACC), along with the branches of circulations that link it to the Atlantic, Pacific, and 

Indian Oceans (Schmitz 1996).

1) SATTELITE DATA OVER THE SOUTHERN OCEAN

Poor spatial coverage by in situ measurements in the Southern Ocean prohibits direct 

comprehensive description of climate variability there. The data from NASA satellites launched 

over the past decade thus provide a unique source of precise measurements of climatically 

important quantities such as SST and SLW. Global coverage and fine resolution make them 

extremely valuable for studying air–sea interaction in the Southern Ocean. In particular, the 

microwave-based sensor AMSR on the AQUA satellite launched in 2002 samples SST field 

under clouds — an opportunity that was previously unavailable for infrared-based SST records 

over the typically cloudy Southern Ocean.

Microwave-based SST products  (Kummerow et al. 2000; Wentz et al. 2000) have been 

utilized before to explore tropical SST variations (Hashizume et al. 2000; Chelton et al. 2001; 

Harrison and Vecchi 2001; Vecchi and Harrison 2002; Vecchi et al. 2003). We will use this type 

of measurements in the present paper to address air–sea interaction over the Southern Ocean.

2) SOUTHERN OCEAN CLIMATE

The Southern Ocean is characterized by intense climatological westerlies that induce strong 

meridional Ekman transports and drive the ACC. The modes of climate variability in the 

Southern Ocean differ by their time scales and spatial signatures, as well as by specific 

dynamical mechanisms. Synoptic variability, with a time scale of a few days, is comprised of 

extremely powerful atmospheric storms associated with baroclinic Rossby waves passing over 



4

the region. These synoptic eddies cause large-amplitude SST responses mainly through enhanced 

vertical turbulent mixing in the oceanic boundary layer and through changes in the air–sea heat 

flux. An example of such coherent patterns of wind and SST anomalies associated with synoptic 

variability is shown in Fig. 1, which displays snapshots of these fields’ anomalies on 1 

December 2002; the anomalies were computed relative to the base 16-day period of 1 – 16 

December 2002. The pattern correlation between the SST and SLW fields over the region shown 

in Fig. 1 is of about r=–0.73, which allows to reject the null hypothesis of zero correlation in 

favor of the alternative of negative correlation at 0.1% level, according to the one-sided t-test 

with ν =16 degrees of freedom (the value of t statistic is t = r ν (1− r2) ≈ −4.3). The number of 

spatial degrees of freedom within the region of interest in the above test was estimated based on 

the de-correlation scale of about 1000 km.

On longer time scales, an intraseasonal mode of intrinsic atmospheric variability is called 

the Southern Annular Mode (SAM). It has a pronounced zonally symmetric component, hence 

its name (Thompson and Wallace 2000; Thompson et al. 2000). It is also known as zonal-flow 

vacillation (Hartmann 1995) and consists of irregular meridional displacements of the 

atmospheric jet. SAM is thought to be energized by higher-frequency synoptic eddies and may, 

in turn, modify the storm track at lower frequencies (Robinson 2000; Lorenz and Hartmann

2001). Feldstein (2000) has argued that SAM variability is due to linear dynamical response to 

stochastic forcing associated with synoptic eddies. In contrast, Koo et al. (2003) presented a 

nonlinear framework for zonal-flow vacillation, based on the paradigm of weather regimes 

(Reinhold and Pierrehumbert 1982; Legras and Ghil 1985; Marshall and Molteni 1993; Koo and 

Ghil 2002; Kravtsov et al. 2005a). Hall and Visbeck (2002) discussed the dynamics of oceanic 
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response to SAM-type surface-wind evolution, and reported significant variations in SST, sea-ice 

extent and ACC transport associated with this variability.

Even longer-term modes of variability include the so-called semi-annual oscillation (Van 

Loon 1967, 1972; Meehl 1991; Meehl et al. 1998) and the Pacific–South American (PSA) 

oscillation (Mo and Ghil 1987) often described as a tropically forced standing wave train (Mo 

and White 1985; Mo and Ghil 1987; Karoly 1989; Grimm and Silva Dias 1995; Garreaud and 

Battisti 1999). The PSA has also been associated with an El Niño/Southern Oscillation (ENSO) 

teleconnection pattern (Kwok and Comiso 2002) and has signatures in the Southern Ocean's 

surface air temperature, SST and sea-ice extent; these signatures are referred to as the Antarctic 

Dipole (Yuan and Martinson 2000, 2001). Finally, the Antarctic Circumpolar Wave (ACW) has 

an interannual time scale and is associated with eastward-propagating signals in SST, sea-level 

pressure, and sea-ice extent (White and Peterson 1996; Jacobs and Mitchell 1996; Peterson and 

White 1998). 

3) AIR–SEA COUPLING OVER THE SOUTHERN OCEAN

Synoptic eddies and the lower-frequency SAM that dominate climate variability in the Southern 

Ocean on weekly-to-intraseasonal time scales are due primarily to intrinsic atmospheric 

dynamics. Surface manifestations of these modes induce significant oceanic response. The SST 

variability associated with this response affects, in turn, the atmospheric flow. Additionally, the 

SLW variability may be modified, on an intraseasonal-to-interannual and longer time scale, by 

SST anomalies associated with intrinsic oceanic or inherently coupled processes, such as the 

PSA and ACW.

Surface wind influences SST directly by modifying vertical turbulent heat exchange 

between the two fluids (Gill 1982; Arya 1988) and inducing strong horizontal Ekman transports 
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in the oceanic mixed layer. High-frequency wind forcing also leads to significant long-term 

oceanic changes by affecting, among other things, the seasonal-mean subsurface temperatures 

and mixed-layer depths (Kamenkovich 2005). In addition, surface-wind fluctuations can energize 

intrinsic oceanic modes, which may play an important role in the dynamics of the Southern 

Ocean (Wunsch 1999; Weisse et al. 1999; Karsten et al. 2002; Gille 2003). The SST signatures 

of these modes have structures that are different from that of a local SST response to wind 

forcing. These oceanic phenomena have long intrinsic time scales and may thus lead to partial 

predictability of the Southern Ocean climate.

The way SLW may respond to SST anomalies is via changes in stability of the marine 

atmospheric boundary layer. Air passing over a positive SST anomaly becomes more unstable; 

this leads to anomalous turbulent momentum flux and amplification of the surface wind (Arya

1988). This effect was shown to be at work over the Eastern Tropical Pacific (Wallace et al.

1989; Liu et al. 2000; Chelton et al. 2001; Hashizume et al. 2001) and over the Southern Ocean 

(O'Neill et al. 2003) on seasonal-to-interannual time scales. Other dynamical factors may also 

contribute to this response at all time scales (Hsu 1984; Lindzen and Nigham 1987; Mitchell and 

Wallace 1992).

The SST-induced modifications of the atmospheric boundary layer may cause changes in 

the free atmosphere's circulation. The linear response is expected to be weak, but nonlinear 

modes of atmospheric variability, such as SAM, may produce a stronger effect (Koo et al. 2003; 

Kravtsov et al. 2006a,b). Feliks et al. (2004, 2007) have shown, in particular, how an oceanic 

thermal front may induce intraseasonal variability in the overlying atmosphere, including 

surface-wind evolution.
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To summarize, the Southern Ocean is characterized by vigorous variability on a wide 

range of time scales. Air–sea interaction in the region is complex and difficult to represent in 

dynamical models, as it involves a wide variety of boundary layer processes, as well as their 

coupling to intrinsic dynamics of the fluids on both sides of the ocean–atmosphere interface. 

Statistically, however, these interactions may well be described by joint variability of SLW and 

SST. A purely empirical model of this co-variability, based on recent high-quality satellite 

observations, could provide an accurate quantitative description of air–sea interaction without 

having to resolve explicitly the complex chain of participating dynamical processes.

4) EMPIRICAL STOCHASTIC MODELS OF SST AND SLW

Data-based inverse stochastic models used in climate dynamics generally belong to one of the 

two major groups: (i) multivariate parametric models with additive, state-independent noise, the 

simplest of which is the so-called linear inverse model (LIM) (Penland 1989, 1996; Penland and 

Sardeshmukh 1995; Penland and Matrosova 1998; Winkler et al. 2001); and (ii) nonparametric, 

univariate or bivariate models involving state-dependent, multiplicative noise (Sura 2003; Sura 

and Gille 2003; Sura et al. 2006; Sura and Newman 2008; Sura and Sardeshmukh 2008). Both 

types of models can be useful in addressing various aspects of climate variability, but are very 

different in terms of how they are constructed, as well as in their potential applications. 

In particular, the models with multiplicative noise consider the time series of a variable of 

interest (for example, u-component of surface wind, or SST) at a single spatial location, and 

estimate state-dependent drift and diffusion parameters of the stochastic differential equation 

(SDE), which presumably governs the evolution of this variable. In order to get reliable estimates 

of model parameters given relatively sparse observations, as is the case for Southern Ocean 

winds, one may concatenate data sets from multiple locations, which are situated far enough so 
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that their respective time series may be assumed to be uncorrelated (Sura 2003). The scalar SDEs 

so obtained describe local features of interactions between processes evolving on different time 

scales. They are particularly successful in interpreting some of the nongaussian aspects of both 

SLW (Sura 2003; Monahan 2004, 2006a,b) and SST (Sura et al. 2006; Sura and Newman 2008; 

Sura and Sardeshmukh 2008) variability. The multiplicative noise in the above studies is 

attributed to random fluctuations of the drag coefficient or air–sea heat exchange coefficient.

On the other hand, multivariate parametric models driven by additive noise are usually 

constructed in the phase space of the leading empirical orthogonal functions (EOFs) 

(Preisendorfer 1988) of the field(s) of interest, thus addressing non-local aspects of the 

variability under consideration. This non-locality comes at the expense of a fairly restrictive 

parametric dependency of the system's tendency on its state. In LIMs, for example, this 

dependency is assumed to be linear, while the model coefficients and noise parameters are found 

by multiple linear regression (MLR). LIMs driven by Gaussian stochastic forcing cannot model 

the nongaussian aspects of the observed statistics, but more general, nonlinear empirical 

parametric models can. Kravtsov et al. (2005b) developed a methodology for constructing such 

nonlinear empirical models, which also addresses some other weaknesses of LIMs. This 

methodology showed excellent results when applied to the problems of mid-latitude variability 

of geopotential heights (Kondrashov et al. 2006), as well as to describing tropical SST evolution 

(Kondrashov et al. 2005).

c. This paper

The purpose of the present paper is to construct an empirical model of SLW variability over the 

Southern Ocean by using concurrent high-quality satellite measurements of SLW and SST. 

Doing so requires the use of recent microwave-sensed SST fields available after the launch of 
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AQUA in June 2002. Since only about 5 years of such data are available, we do not attempt to 

develop a closed model that would simulate by itself long-term aspects of SLW–SST co-

variability, such as ACW; this would require a much longer data set with enough degrees of 

freedom to capture interannual SST signals. Instead, the quantities involving SST observations 

will serve as predictors in the stochastic model of SLW evolution; the time-dependent SST 

anomalies themselves will be treated as given. We will show that this model is capable of 

reproducing the statistics of daily-to-intraseasonal SLW anomalies. As a brief introductory 

illustration of one of many potential uses of the empirical model constructed, we will present 

some evidence for large-scale oceanic imprint onto the atmospheric variability in the Southern 

Ocean by comparing the statistics of an SLW-only empirical model with that of a model forced 

by the daily history of SST anomalies. 

Our statistical SST-dependent SLW model will also be able to capture some aspects of 

air–sea interaction and longer-term variability when coupled to a dynamical oceanic component.  

Experiments with such a coupled dynamical–statistical model will be studied in a future paper. 

The application of our statistical model as a component of a hybrid coupled GCM requires that 

both local and non-local aspects of SLW variability and its coupling with SST variability be 

comprehensively represented in the empirical model. We will therefore build upon the 

methodology of Kravtsov et al. (2005b) to construct this model. As we have mentioned at the 

end of section 1a, the high-dimensional nature of basin-scale air–sea coupling in the Southern 

Ocean region prohibits direct application of Kravtsov et al. (2005b) method and requires major 

modifications to the model construction algorithm; these changes, when applied to gap-free 

satellite datasets with missing data filled-in by M-SSA (Kondrashov and Ghil, 2006), are 

essential in obtaining stable estimates of the empirical model propagator.
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The rest of the paper is organized as follows. Section 2 describes the data sources, pre-

processing and gap-filling methodology, as well as the data set’s basic statistics. Section 3 

outlines general, as well as novel technical aspects of the empirical stochastic model 

construction, with methodological details given in the appendices. The performance of our 

empirical models is evaluated in section 4, while section 5 summarizes our results and elaborates 

on their significance.  

2. Data, pre-processing methodology, and basic statistics

a. Data sources

The gridded data products used in this analysis are obtained from the Remote Sensing Sytems 

website (http://www.ssmi.com). The SST data are taken from the AMSR-E ocean data product 

(Version-5) for the time interval from June 2002 to February 2007 (Kawanishi et al. 2003). 

Missing data are due to sun glint, heavy rain, proximity of ice edge, and winds greater than 20 m 

s–1. The wind speed and direction at 10 m above sea level are obtained from the QuikSCAT 

scatterometer dataset (Liu 2002). The geophysical data record began on July 1999; for the 

analysis in this paper, we use data for the time interval that overlaps with that of the AMSR-E 

dataset. Although the scatterometer data tend to be less accurate in the presence of rain, we do

not remove such data entries, since our statistical technique is based on analyzing spatial 

covariances within the fields considered; the small-scale random errors associated with rain 

occurrences will thus be effectively filtered out.

Both gridded data sets are available on a 0.25º×0.25º grid twice a day, on ascending and 

descending paths. For our subsequent analyses, the data were averaged in space and time to 

produce daily values on a 2º×2º grid.
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b. Filling the missing data

While recent satellite observations over the Southern Ocean do have a previously unprecedented 

quality, there are still gaps in data coverage in the presence of heavy rains or strong winds; 

specifically, about 40% of the points in the SST data set and 20% in the SLW data set were 

missing. In order to fill these gaps in the data, we used the methodology of Kondrashov and Ghil

(2006). Their algorithm is based on multi-channel singular spectrum analysis (M-SSA) (Ghil et 

al. 2002) and takes advantage of both spatial and temporal correlations in the existing data to 

iteratively produce estimates of missing data points, which are then used to compute a self-

consistent spatiotemporal lag-covariance matrix; cross-validation is applied to find the optimal 

window width and number of dominant M-SSA modes to fill the gaps. 

The missing data have been filled-in for SLW and SST fields separately; that is, cross-

correlations between these two fields were not exploited.  Since the total number of spatial grid 

points exceeds the temporal length of the data set (in days) for both SLW and SST, we utilized 

the “reduced-covariance” approach (Ghil et al. 2002) to compute the spatio-temporal lag-

covariance matrix. Based on the results of cross-validation experiments, we chose the lag of 1 

day and 300 M-SSA modes for filling SLW components and the lag of 5 days and 160 M-SSA 

modes for SST. The domain-averaged root-mean-square (rms) error for filled-in values is 

estimated to be 0.44ºC for SSTs and 1.7 ms–1 for SLW components. 

c. Basic statistics

1) FILTERING

We considered continuous, filled-in by M-SSA data sets of daily SST scalars and SLW vectors 

on a 2 × 2º grid (65º–30ºS), for the period of 1 June 2002 – 13 February 2007, for a total of 1719 

days. We first removed the seasonal cycle by retaining, at each grid point, only the residual of 
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the multiple linear regression of the original, unfiltered time series onto a ten-variable “seasonal 

cycle” time series. The latter time series had the form sin(2πnt /365), cos(2πnt /365))( , where 

time t is measured in days and changes from t = 0 to t = 1718, while n = 1, 2, 3, 4, 5. The filtered 

versions of the original SST and SLW time series were then also linearly detrended to get rid of 

secular variability, since our statistical models are assumed to be stationary.

2) LOW-ORDER MOMENTS

Figure 2 shows a few of low-order moments of the filtered anomalies so obtained. The time-

mean wind is plotted in panel (a), with the wind speed given by color shading, and the direction 

of the wind by arrows. The winds are predominantly westerly, as expected, and their spatial 

pattern represents a mid-latitude jet, whose axis is located at about 50ºS between South America 

and Australia, and at about 55ºS elsewhere; the strength of the jet in the latter region is somewhat 

weaker, with the exception of even weaker time-mean winds just east of South America. The 

standard deviation of the wind speed shown in panel (b) is fairly uniform throughout the 

Southern Ocean, with the most intense variability south of the stronger portion of the jet, and the 

weakest variance at the northern edge of the Southern Ocean. Modern data sets thus indicate that, 

at the 2º×2º resolution used here, the “furious fifties” are much more intense than the “roaring 

forties” of sailing days. Moreover, at this resolution and on a 5-yr average, winds off Cape Horn 

or the Cape of Good Hope are not particularly strong, although their standard deviation is 

maximal off Cape Horn and above the Agulhas Current, east and south of the Cape of Good 

Hope.

Color shading in panel (c) shows the distribution of the skewness of the zonal component 

of the surface wind, which is found to be negative in the majority of the basin. Monahan (2004) 

explains this property of the zonal-wind anomalies in terms of a nonlinear surface drag law: 
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according to this law, positive anomalies in u in the region with positive time-mean zonal winds 

will be subjected to stronger friction than negative anomalies, so that the resulting u-wind 

distribution will be negatively skewed.

The time-mean SST field (Fig. 2d) is consistent with the climatological wind (Fig. 2a) in 

that the strongest SST front is co-located with the strongest zonal jet, south of Africa and further 

eastward, at 40ºS. This is presumably the region of the strongest ACC as well. The north–south 

SST gradients elsewhere are weaker. The SST variance (not shown) is largely uniform 

throughout the Southern ocean, with values around 1–2º C.

3) PRINCIPAL COMPONENT (PC) ANALYSIS

Prior to computing the EOFs and PCs of SLW and SST, we multiplied the time series of these 

quantities at each grid point by the square root of the cosine of its latitude, to account for the 

meridian convergence and get area-weighted grid-point contributions to the total variance of 

each field. The EOFs of SST and SLW were computed separately, and we used the combined (u, 

v) field to compute the latter. The percentages of variance accounted for by the first 100 EOFs of 

SLW are shown in Figs. 3a,b, while the analogous plots for SST EOF are in Figs. 3c,d. 

Two leading SLW EOF pairs are somewhat separated from each other and from the rest 

of the modes (Fig. 3a) and together account for about 20% of the total SLW variance (Fig. 3c). 

These two pairs are associated with the leading synoptic disturbances in the “weaker jet” 

(160ºW–80ºW) and “stronger jet” region (40ºW–130ºE), respectively; compare Fig. 2a and Fig. 

4. Spatial analysis of Figs. 4a,b and 4c,d shows that these two modes are characterized by zonal 

wave numbers 8 and 9, respectively. For the SST, only two leading EOFs stand out from the rest 

(Fig. 3c), and account for about 12% of the total SST variance (Fig. 3d). Both of these EOFs 

have a wavelike pattern with dominant zonal wavenumbers 3–4 (Figs. 5a,b) and pronounced 
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interannual variability (Fig. 5c) suggesting their possible association with the ACW. The EOF 

spectrum becomes fairly flat roughly beyond mode 40 for SLW and mode 20 for SST. The 

leading 100 EOFs account for about 80% of the total variance of both fields.

Figure 6 shows integral correlation time scales Tint of the leading 100 EOFs of SLW in 

panel (a) and SST in panel (b). The quantity Tint was defined as Tint = | c(τ ) |
τ =1

100∑ ∆τ , where c( τ ) 

is the autocorrelation of a given PC at the lag τ (in days), and ∆τ =1 day. In general, the integral 

correlation time scale of the trailing modes is shorter than that of the leading modes, for both the 

SLW and SST PCs, although the dependence of Tint on the mode number is not monotonic. The 

leading EOF pairs of SLW have time scales of about 5.5 and 4 days, respectively, while the 

leading EOF pair of SST is characterized by Tint ≈ 60 days. The latter estimate is an order of 

magnitude longer than the maximum Tint of the SLW EOFs, which is of about 7 days. 

Hasselmann (1976) introduced a null hypothesis for low-frequency variability SST anomalies, 

which involved integration of fast and essentially random air–sea heat fluxes by an ocean mixed 

layer. The fast random heat flux forcing was associated with SLW variability, while the longer 

time scale of SST anomalies arose due to ocean mixed layer’s thermal inertia. We argue that 

leading SST modes are not consistent with this null hypothesis for two reasons: (i) the 

Hasselmann mechanism is local, implying positive spatial correlations between SLW and SST 

patterns, whereas the patterns in Figs. 4 and 5a,b are not so correlated; and (ii) the interannual 

time scales of the leading SST modes (Fig. 5c) are longer than those associated with mixed layer 

thermal inertia. We thus conjecture that the leading SST modes arise from intrinsic ocean 

dynamics. 

In fact, the arguments of the latter paragraph apply to most of the SST EOFs, more so for 

leading modes, and to a somewhat smaller degree for the trailing modes. The empirical 
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stochastic models of SLW constructed in the next section will include the dependence on SST 

anomalies that span the subspace of their leading K EOFs, with K = 50 and K = 75. Therefore, 

any sensitivity of the SLW variability produced by empirical stochastic models to these SST 

anomalies should be interpreted as that caused by SST variability, rather than vice-versa.

3. Construction of empirical stochastic models

a. General methodology

We construct empirical stochastic models in the phase space of M leading EOFs of SLW, for 

various values of M (10–100), following the general methodology of Kravtsov et al. (2005b). In 

order to do so, we first form daily tendencies of N leading PCs of SLW: the tendency at day n, 

for example, is approximated as the difference between the value of a given PC at day n+1 minus 

the value of this PC at day n. The M time series of tendencies so obtained represent our response 

variables. 

We will consider several versions of the empirical models. In the simplest, linear case,

the main level of the empirical model is obtained by multiple linear regression (MLR) of each 

response variable onto M leading PCs of SLW, resulting in an equation of the form

x n+1 − xn = B• x n + r n ,                                                           (1)

where x is an M-component vector of the leading PCs, B is an M × M matrix of the regression 

coefficients, while r is the vector of M residual time series uncorrelated with each of the 

predictor variables; as before, n is the time index (in days). If we model r as vector-noise dw

that is white in time, but spatially correlated, then the formulation of Eq. (1) is a so-called linear 

inverse model (LIM) of SLW variability. The spatial correlation refers to that between the 
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different components of the residual time series in r (and dw). Given random realizations of the 

forcing dw, the LIM (1) can be integrated to produce surrogate time series of the M leading PCs 

of SLW, which can then be translated into variable SLW patterns in physical space by summing 

the SLW EOFs multiplied by the value of the corresponding surrogate PC at a given time. The 

statistics of such surrogate SLW realizations can then be compared to that of the observed 

anomalies to judge the performance of the LIM.

Kravtsov et al. (2005b) introduced several improvements to the LIM (1). In particular, it 

often happens that the autocorrelation of the residuals at nonzero lags is not negligible. In order 

to address this problem, Kravtsov et al. (2005b) proposed to construct an additional level of the 

inverse model; at this level, the tendencies of the main-level residuals are modeled as a linear 

function of the extended state vector [xn ; r n ], consisting of the M original PCs, plus M first-level 

residuals:

r n +1 − r n = B1 •[xn; r n ]+ r1
n .               (2)

This exercise produces M second-level residuals: if the latter are not white in time, their 

tendencies can in turn be modeled as a linear function of the extended state vector consisting 

now of the M original PCs, M first-level residuals, as well as M second-level residuals. 

Additional levels can be added in the same way until the residual time series becomes white in 

time. Note that this procedure is different from merely modeling the main-level residual as 

colored noise, since it also takes into account any hidden dependency of the residual tendencies 

on the main-level PC predictors.

Another modification, which proved useful in modeling tropical SST evolution in 

Kondrashov et al. (2005), consisted of the inclusion of an explicit seasonal cycle. Despite our 

having removed the explicit seasonal cycle from the SLW fields prior to constructing our 
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empirical stochastic model, the parameters of this model may still have some seasonal 

dependence. Kondrashov et al. (2005) found that the optimal way to incorporate such 

dependence is two include, at the main level of the model, two additional predictors, namely 

sin(2πt /365) and cos(2πt /365) . The remainder of the procedure is unaltered, and the 

construction of the additional levels of the empirical stochastic models proceeds as described 

above.

Finally, the most significant modification of LIM methodology in Kravtsov et al. (2005b) 

was to consider nonlinear combinations of basic predictors. For example, one can include, in 

addition to M predictor variables (PC-1–PC-M), all possible quadratic combinations of PCs: the 

product of PC-1 with all of PC-1–PC-M, plus the product of PC-2 with PC-2–PC-M, and so on. 

Using index notations for vectors, matrices, and tensors, and assuming implicit summation over 

repeating indices, the modified main-level equation can be written as

x i
n+1 − x i

n = aijk x j
n xk

n + bij x j
n + c i + ri

n .                                                                       (3)

The coefficients of such a regression model are also found by the MLR procedure; however, 

since this procedure now employs an extended vector of predictor variables and their quadratic 

combinations, it is called multiple quadratic regression (MQR). Kravtsov et al. (2005b) argued 

that it is best to restrict the nonlinear modifications to the main level of the empirical model, 

while the construction of additional levels proceeds as before. The main advantage of a nonlinear 

empirical model is that it can address nongaussian aspects of the observed variability. Its main 

disadvantage is a potentially much larger number of predictors: in a quadratic model based on M

PCs and including two periodic seasonal cycle variables and a constant forcing term, the number 

of predictors is M × (M +1) /2 + M + 3, and so is the number of coefficients that need to be 

determined by the regression procedure for each of the M response variables. Kravtsov et al.



18

(2005b) argued that this problem may be efficiently addressed by a variety of regularization 

procedures that allow one to avoid overfitting and construct nonlinear multi-level stochastic 

models with optimal predictive capabilities. We built on this approach here to develop a novel 

regularization algorithm for robust estimation of empirical model coefficients (see the 

appendices).

b. Stochastic model versions

Using the regularization methods described in appendix A, we have constructed several 

empirical model versions, which differed by the number of PCs considered, the order of 

nonlinearity at the main level of the model, and the presence or absence of the dependence on 

SST. All models had three levels, with levels 2 and 3 being linear. The SLW-only models with 

linear and quadratic main level were obtained in the subspace of M=10, 15, 20, 25, 30, 35, 40, 

45, 50, 75, and 100 PCs, and the cubic models for all of the above M ≤ 40. 

We found that the performance of all these model versions is very similar, for a given M. 

This result argues for using the linear SLW-only model, because it has the simplest form and the 

smallest number of coefficients; hence, it is more reliable and easily implemented than nonlinear 

models. The SLW model with SST dependence was based on M = 100 leading PCs of the SLW 

field — x , and L = 50 or L = 75 leading PCs of the SST field — y The main level of the SST-

dependent SLW model included linear dependence on SLW and SST PCs, the cross-product of 

each SLW PC with each SST PC, constant forcing term, and two seasonal cycle variables; no 

quadratic combinations of SLW PCs or SST PCs were used as predictors:

x i
n+1 − x i

n = aijk x j
n yk

n + bij
x x j

n + bik
y yk

n + c i
s sin(2πtn /365) + c i

c cos(2πtn /365) + c i + ri
n .                    (4)
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4. Performance of empirical stochastic models

a. Simulation procedure

Empirical models constructed using the methodology described in the previous section and the 

appendices were used to produce 100 surrogate simulations of SLW variability, each of these 

simulations being 1719-day long. Despite the regularization applied when constructing 

regression models, a few of the simulations using nonlinear models exhibited instability. In order 

to avoid such situations altogether, we have used the following procedure. 

The models were integrated forward for ten days starting from random initial states. If at 

any time during this ten-day period either (i) the absolute value of any simulated PC exceeded 

some threshold value, set to be the same for all PCs; or (ii) the absolute value of any simulated 

second-level variable exceeded another threshold value, again the same for all components of the 

second-level vector; or (iii) the third-level variables exceeded their own threshold value, then this 

ten-day simulation was discarded and restarted from another random state. The procedure was 

repeated as many times as necessary until a ten-day simulation with the values of all variables 

within the specified range was obtained. 

The threshold value for the PCs was computed as the observed maximum of the absolute 

value, over all the PCs and during the whole observational interval; the threshold values for the 

second and third-level variables were computed in the same way using “observed values” of 

these quantities. We kept track of the number of times the threshold condition above was 

violated, during each of 1719-day surrogate simulations. Table 1 lists the average values of this 

number for the simulations using linear, quadratic, and cubic SLW-only models. The average is 

computed over 100 available realizations of each empirical model. 
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In general, the number of initial-state resets is small, on the order of 10–20 resets during 

1719-day-long simulation. Note that the resets do not always reflect instability — our linear 

model is, for example, always stable, in agreement with LIM theory (Penland 1989, 1996; 

Penland and Ghil 1993), but it still produces the values that exceed chosen thresholds from time 

to time. On the other hand, the cubic model for M = 35 and 40 does run out of control and may 

produce unbounded realizations of the simulated fields. Finally, the models that include SST 

forcing are not listed in Table 1, because they never produce realizations that exceed the 

threshold values. This fact suggests that coupling with SST is important for properly modeling 

SLW variability (see also section 4c).

b. Daily-to-monthly aspects of SLW variability

We illustrate the performance of the empirical models by examining first local aspects of the 

simulated SLW variability. Figure 7 shows probability density function (PDF; left panels) and 

autocorrelation function (ACF; right panels) of the observed and simulated zonal velocity 

anomalies at 120ºW and 55ºS — in the middle of an intense-jet region (see Fig. 2); the 

correspondence at other locations is qualitatively and quantitatively analogous. The heavy solid 

line in all the plots shows the observed PDF or ACF, while the dashed lines mark the 95% spread 

in these quantities obtained from 100 realizations of the quadratic SLW model. The four top-to-

bottom rows of Fig. 7 display the results from the empirical model based on M = 10, 30, 50, and 

100 SLW PCs, respectively.

The empirical model of 10 leading PC components of SLW (upper row) produces a time 

series with a substantially smaller variance of the wind at the given location, while the time scale 

of SLW anomalies there is overestimated. Both of these results are to be expected, since the 

leading SLW EOFs account for a limited fraction of total variance (Fig. 3) and are generally 
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characterized by the longest time scales (Fig. 6). Including progressively more components into 

the empirical model achieves continuous improvement of these two characteristics of SLW 

variability, with the 100-component model capturing quite well both the variance and the time 

scale of SLW anomalies. None of the model versions, however, captures the observed negative 

skewness of the zonal-velocity distribution. In fact, the quadratic model PDFs are essentially 

Gaussian and very similar to the ones obtained using simulations of the cubic and linear models 

(not shown). 

We have tried a number of ways to better capture the skewness of the zonal-wind 

anomalies in our empirical models. These attempts included choosing a different EOF basis, 

which arranged the SLW patterns so that each of them would capture a significant fraction of 

variance, while having maximally skewed distribution, as well as blending our multi-level model 

methodology with the multiplicative-noise techniques of Sura and collaborators (see section 1b), 

but still failed to reproduce the negative skewness of the zonal-wind anomalies. We think that the 

reason for this failure is that the dynamics behind this negative skewness is essentially local, as it 

involves the effectively larger surface drag for positive u-wind anomalies in the region of the 

positive time-mean u-wind (Monahan 2004). Considering the anomalies in the EOF basis does 

not optimally represent such local dynamics: Each of the PCs turns out to possess skewness 

values smaller than the typical skewness of the zonal wind at a certain grid point, and this 

skewness is identified by the regression procedure as negligible; hence, this non-Gaussian aspect 

of zonal-wind behavior is not properly represented in our empirical models. Non-local dynamics, 

though, are well represented in our statistical models of SLW evolution, as we will see in section 

4c.
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The correspondence between the observed and simulated statistics for meridional SLW 

components is similar or better than that in Fig. 7 (not shown), since the meridional wind 

distribution is generally more gaussian. Similar results are also obtained for other locations in the 

Southern Ocean (not shown). These local results are essentially indistinguishable between all 

versions of the empirical models including the SST-dependent version, given the number of 

SLW PCs considered.

c. SST effects on SLW evolution

We show here some preliminary evidence for the substantial oceanic imprint onto Southern 

Ocean’s SLW variability; this oceanic effect is a necessary condition for the existence of active 

ocean–atmosphere coupling there. In order to do so, we have computed ensemble-averaged 

evolution of the SLW anomalies for a 100-member ensemble using the empirical stochastic 

model forced by the history of the observed SST anomalies, as well as this evolution for the 

SLW-only stochastic model. We then computed the standard deviation of the ensemble-averaged 

wind speed for both cases, at each grid point: the results of this computation for the SST-

dependent SLW model are shown in Fig. 8. The standard deviation in the SST-dependent case is 

much larger, at all grid points, than that in the SLW-only case (not shown), and exhibits a 

distinctive large-scale spatial pattern, suggesting this SLW variability is forced by long-term, 

ocean-induced SST anomalies. We plan to address this intriguing behavior in a future paper (see 

section 5).

In summary, the model constructed in the phase space of 100 leading EOFs of SLW and 

including, in addition, linear and bilinear interactions with SST anomalies restricted to the 

subspace of 75 leading EOFs of SST, as well as the seasonal effects, is stationary and captures 

several local and non-local aspects of SLW evolution, on all time scales. We plan to use this 
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model as the atmospheric component of a hybrid coupled model in which the oceanic component 

will be a state-of-the-art GCM (see section 5). 

5. Summary and discussion

We have analyzed five years of remotely sensed data sets of sea-surface temperature (SST) and 

sea-level wind (SLW) over the Southern Ocean; the microwave sensors installed on recently 

launched NASA satellites provide an unprecedented quantity and quality of observations in the 

region. The missing data due to heavy rains or cloud coverage has been filled-in by singular 

spectrum analysis (SSA). The main technical outcome of this investigation is the construction of 

a statistical, stochastically forced model of SLW over the Southern Ocean; the model 

construction algorithm uses a number of essential innovations required to obtained robust 

estimates of the model’s propagator. This model captures detailed features of SLW variability on 

a wide range of time scales, from daily to interannual, and spatial scales spanning the range from 

the atmospheric Rossby radius to the basin scale. The model also accounts for ocean–atmosphere 

coupling via dependence of SLW equations on the SST anomalies. 

The model’s potential in helping to interpret observed evolution of Southern Ocean’s 

climatic variables is briefly illustrated by identifying substantial oceanic imprint onto SLW 

variability, which may be indicative of possible coupled ocean–atmosphere effects in the 

Southern Ocean: ensemble averaging over 100 simulation of the statistical model forced by the 

observed SST anomalies reveals variability of a large magnitude and distinctive spatial pattern. 

The analogous ensemble average based on simulations of the SLW-only model is characterized 

by a very small magnitude and a lack of spatial coherence. 
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The construction of the above statistical models is rooted in the empirical methodology of 

Kravtsov et al. (2005b) and Kondrashov et al. (2005, 2006); however, the model construction 

algorithm is substantially modified and improved here in a number of ways that help choose the 

optimal model structure (see the appendices). The most comprehensive statistical model operates 

in the subspace spanned by 100 leading empirical orthogonal functions (EOFs) of the daily SLW 

over the Southern Ocean, thus modeling the evolution of 100 corresponding principal 

components (PCs); the seasonal cycle was removed from all fields prior to performing the 

principal component analysis. 

The model equations relate the time derivative of each PC to the right-hand side 

consisting of three parts: the part that depends on SLW only, the SST-dependent part, and the 

variable forcing term. The first part is approximated as a linear function of all PCs of the SLW 

field. The dependence on SSTs is modeled as the linear function of the leading 75 PCs of the 

SST, plus bilinear terms involving the cross-product of SLW and SST PCs; since this part is 

nonlinear, the seasonally dependent forcing term is also included. The variable forcing that 

drives the variability in the model is simulated in a separate set of equations that relate the time 

derivative of each component of the forcing vector to the linear function of SLW and SST PCs, 

as well as the forcing vector itself, and also include the second-level variable forcing. The 

second-level forcing’s tendency is in turn modeled linearly in a way analogous to the main-level 

forcing, while the variable forcing at this last, third level of the model is approximated as 

spatially coherent noise that is white in time. The construction of this statistical model involved a 

novel multi-step regression algorithm to compute the coefficients of the model’s propagator, as 

well as to determine the parameters of the noise.
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We plan to use the statistical model constructed in the present study to further investigate 

the dynamics of ocean–atmosphere interaction over the Southern Ocean. In particular, our 

current results may suggest the presence of active coupling in the region by identifying a 

nontrivial SLW response to the observed SST anomalies, although Bretherton and Battisti (2000) 

proposed alternative explanations to such findings. Goodman and Marshall (1999), on the other 

hand,  formulated a theory of interannual-to-decadal coupled variability that is potentially 

applicable to the Southern Ocean. This theory predicts the existence of coupled modes, given a 

certain spatial phase relationship between SST patterns and SST-induced SLW anomalies; this 

phase relationship gives rise to Ekman pumping anomalies that force and modify the oceanic 

circulation and the associated SST field. It would be interesting to check whether we can detect 

such a phase relationship in our statistical model.

Another very promising way to apply our empirical SLW model is to couple it to an 

oceanic GCM. We plan to achieve this coupling by blending the SST-dependent SLW model 

with atmospheric boundary layer model of Seager et al. (1995). The latter model needs the 

specification of boundary-layer winds to compute ocean–atmosphere heat fluxes. These winds 

will be supplied by the statistical model, and will also be used to compute the atmosphere–ocean 

momentum flux. The ocean model forced by heat, moisture, and momentum fluxes will predict 

the evolution of the SST field, which will, in turn, affect the future SLW anomalies. The 

experiments with such a hybrid coupled GCM of the Southern Ocean regions may provide 

invaluable insights into the dynamics of climate variability there.
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APPENDIX A

PCR and PLS regression

The main regularization tool is cross-validation, in which one chooses randomly a subset of the 

vector time series (in the analyses below, we typically consider 80% of original data points), 

applies a given regression technique, and then uses the regression model to reconstruct the 

segments of the time series that were omitted in the model identification step. The performance 

of the regression technique may then be assessed according, for example, to the smallness of the 

differences between the regression-based prediction and the actual values of the time series. We 

will use cross-validation in a number of different ways when constructing the empirical models 

below.

A major problem in applying MQR or MLR based on a large number of predictors is 

multi-collinearity (Press et al. 1994). This problem can be avoided by finding linear 

combinations of original predictors in such a way that their time series are uncorrelated, while 

each linear combination accounts for the maximum possible amount of the total variance. A 

natural way to determine this modified set of predictors is to apply principal component analysis 

to the original vector of predictors, and then use cross-validation for finding the optimal number 

of PCs to retain in the regression; this procedure is called the principal component regression 

(PCR). Note that since we construct our empirical models in the phase space of the data set’s 

EOFs, the predictor variables in an LIM are already uncorrelated. On the other hand, the MQR 

predictors are the original set of PCs augmented by their quadratic combinations. Therefore, 

applying principal component analysis to this new multivariate data set generally produces a 

different set of predictors.
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The PCR results for MQR based on several numbers of PCs, M=10, 15, 20, 25, 30, 35, 

and 40, are displayed in Fig. 9; the values of M are shown on the abscissa of this graph. We 

computed the optimal number of PCR predictors for each of the M equations of the quadratic 

regression model. We thus obtained, for the model describing the evolution of M leading SLW 

PCs, M estimates of the optimal number of PCR components. The error bar plot in Fig. 9 shows 

the average value of this number over the M available estimates, along with its standard 

deviation. The dependence of the optimal number of PCR components on the number of original 

PCs is very well approximated by a linear fit (heavy solid line); this number is much smaller, for 

large M, than the maximum possible number of variables, which is equal, for MQR, 

to M × (M +1) /2 + M + 3.

PCR does a fairly good job in picking the smallest set of uncorrelated predictors that 

capture most of the variance. However, the choice of the PCR predictors does not involve at all 

the information about how well these predictors are correlated with the response variable. The 

procedure that does take into account this additional information is called partial least-squares 

regression (PLS); see Abdi (2003) for a brief, but comprehensive review. We apply PLS to the 

set of optimal predictors determined via PCR cross-validation (Fig. 9), rather than to the original, 

much larger set of predictors. 

Similarly to the PCR procedure, the leading PLS predictor is defined as a linear 

combination of the original predictor time series, but in this case the quantity being maximized is 

the correlation between this time series and the predictor time series. We found that applying 

PLS to each response variable individually produces better results than the matrix formulation of 

the PLS algorithm, which also considers linear combinations of all response variables and finds 

two sets of coefficients that define the mode of response and the mode of predictor variables that 
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are maximally correlated (Abdi 2003). In the general multivariate case, the weights of the 

leading PLS mode are found using Singular Value Decomposition (SVD) as the first right 

singular vector of the matrix XTY, where X and Y are the matrices whose columns are the time

series of the predictor and response variables, respectively. The right singular vectors of XTY

defines the weights for the response variables; in the univariate case, the single such weight is 

naturally equal to 1. 

The time series of the leading PLS mode is obtained by summing the original time series 

of the predictor variables with the weights obtained as above. The signal associated with the 

leading PLS mode is then regressed out of both the response variable(s) time series, and all the 

predictor time series; this is done, once again, by only retaining the residual of the linear 

regression of each of these time series onto the time series associated with the leading PLS 

mode. The above procedure is then applied to the “reduced” response and predictor time series to 

obtain the next PLS mode, and so on to obtain all the PLS modes. The optimal number of modes 

to retain in this procedure is also determined by cross-validation.

The PLS cross-validation results for the main level of the quadratic models based on 

M=10, 15, 20, 25, 30, 35, and 40 PCs are shown in the upper row of Fig. 10. The error bar plot in 

the left panel is analogous to that in Fig. 9, and shows, in this case, the optimal number of PLS 

components, which is found to be less than 10 for all M. The error bar plot with x-symbols (solid 

lines) in the right panel shows the residual variance as the percentage of the total response-

variable variance; the expectation value and the standard deviation for a given M are, once again, 

based on the results of the PLS procedure applied to each of the M response variables (and, of 

course, the same set of original predictors). The additional error bar plot in the same panel 

(dashed line with circles) shows the same quantity based on the full MQR, which uses all of the 
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original response variables. Note that for M=10, 15, and 20, only a few (definitely less than 10) 

effective predictor variables found by consecutive application of the PCR and PLS 

methodologies capture essentially the same amount of variance in the response variables as the 

MQR based on 63, 138, and 223 variables, respectively. For M = 40, the residual variances differ 

by a factor of 2, which indicates that the additional variance “captured” by the original MQR 

procedure is associated with a substantial overfitting.

The additional panels in Fig. 10 show analogous results for the second (2M original 

predictors) and third (3M original predictors) level of the wind-only empirical stochastic model. 

The PCR pre-processing has not been applied to these levels, so that the PLS regularization acted 

directly on the original PCs and residuals. In each case, about a dozen optimal predictors are 

identified, which capture essentially the same amount of the response variance as the full MLR 

model for this level. Note that the residual variances become increasingly close to 50% for the 

second and third level. Since our response variables have the form rn+1–rn and the predictors 

include the term rn, the case with no prediction skill (that is, r being pure white noise) will 

identify the regression coefficient multiplying rn to be equal to –1, and all other coefficients to be 

zero. In this case, the residual will be exactly equal to rn+1, and therefore the residual variance 

will be exactly equal to the 50% of the response-variable variance. The deviations of the residual 

variance from 50% in the fourth level of the wind-only regression model are negligible (not 

shown), thus identifying the three-level empirical model to be optimal.
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APPENDIX B

Selection of predictor variables

A few regression coefficients found by the application of PCR-and-PLS regularization, as 

described in appendix A, can be translated by trivial matrix manipulation into the coefficients of 

the empirical model in the original predictor-variable basis. Many of these coefficients are fairly 

small and do not contribute much to the predictive capability of a given empirical model. We 

therefore fine-tuned and enhanced our regression technique by the following procedure for the 

selection of the predictor variables. 

This procedure was also based on subsampling of original predictor and response 

variables. For a model mimicking the evolution of M original PCs of SLW (M=10–100), we first 

obtained 100 sets of regression coefficients by randomly applying PCR-and-PLS regularization 

to 100 randomly sampled subsets of the full original time series, each of which included 80% of 

the original data points. The optimal number of PCR components in the quadratic model was 

estimated according to the linear approximation shown in Fig. 9. The general cubic model was 

also constructed for M = 10–40; for this model, we determined the optimal number of PCR 

components in a way analogous to that for the quadratic model, prior to applying the PLS 

regularization step. No PCR step was applied to the linear models. At the PLS step, we have used 

a fixed number of 25 latent variables to define the optimal subspace for regression. This number 

exceeded the optimal one in Fig. 9 by at least a factor of two and thus could not result in 

underfitting. The regression coefficients so obtained were then translated into the original 

predictor-variable space.

If the interval between the 2nd and 97th percentile of a given regression coefficient 

obtained as described above contained the value zero, we excluded the corresponding predictor 
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variable from consideration, thus forming a new, smaller subset of predictor variables. This 

subset was in turn subsampled 100 times and subjected to PCR-and-PLS regression to identify 

coefficients not significantly different from zero, and so on, until all coefficients of the final set 

of predictors were found to be significant. The same procedure was applied to the second and 

third level of each version of the inverse model. The final regression coefficients in each case 

were found by applying the PCR-and-PLS regularization to the fully sampled set of optimal 

predictors.

Table 2 lists the number of statistically significant nonzero coefficients of the three-level 

inverse model of M leading PCs of SLW; the main level includes quadratic nonlinearities and a 

seasonal cycle. The total number of coefficients at the main level is 

(M × (M + 1) /2 + M + 3) × M , at the second level – 2M2, and at the third level – 3M2. Note that 

the statistically significant coefficients are but a small fraction of the total number of 

coefficients. For example, for M = 75, the main level of the quadratic model has only 4849 

nonzero coefficients, out of a maximum possible of 219600. This means that our regression 

procedure identified, on average, 4849/75 ≈ 65 nonzero coefficients in each of the 75 main-level 

equations; this number is an order of magnitude smaller than the number of degrees of freedom 

NDOF in the time series of the length of 1719. If one estimates the decorrelation time scale of 

SLW anomalies to be 5 days, then NDOF ≈ 1719/5 = 344 >> 65. Recall also, that the number of 

independent regression coefficients we have actually computed at each level is 25, which makes 

the number of coefficients/DOF comparison even more favorable.
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Table Captions

TABLE 1. Average number of initial-state resets for different empirical SLW-only models 

computed based on 100 surrogate simulations of a given model (see section 4a).

TABLE 2. The number of statistically significant coefficients of a three-level quadratic inverse 

model based on M leading PCs of SLW (see Appendix B for further details).

Figure Captions

Fig. 1. Anomalies of atmospheric (SLW) and oceanic (SST) fields on 1 December 2002, 

computed as the deviations from the average over the 16-day period of 1–16 December 2002: (a) 

sea-level wind (SLW) anomaly; (b) sea-surface temperature (SST) anomalies. The two fields are 

spatially correlated, over the region shown, with the correlation coefficient of –0.73.

Fig. 2. Low-order moments of SLW and SST anomalies: (a) time-mean SLW; (b) standard 

deviation of SLW; (c) skewness of the zonal component of SLW; and (d) time-mean SST.

Fig. 3. Variances accounted for by the 100 leading EOF modes of (a,b) SLW and (c,d) SST; 

individual and cumulative variances appear in panels (a,c) and (b,d), respectively.

Fig. 4. Leading EOFs of SLW: (a,b) EOFs 1 and 2; (c,d) EOFs 3 and 4.

Fig. 5. Leading EOFs of SST: (a,b) EOFs 1 and 2; and (c) corresponding PCs (PCs 1 and 2 are 

shown as solid and dashed lines, respectively).
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Fig. 6. Integral correlation time scales of the leading 100 PCs for: (a) wind, and (b) SST.

Fig. 7. Probability density function (PDF; left panels) and autocorrelation function (ACF; right 

panels) of the observed and simulated zonal velocity anomalies at 120ºW and 55ºS. Solid lines: 

the observed functions; dashed lines: 95% spread based on SLW-only model with quadratic main 

level. The four rows show the results, from top to bottom, for the models constructed in the 

subspace of 10, 30, 50, and 100 PCs of SLW, respectively.

Fig. 8. The standard deviation of the wind speed time series obtained by taking the ensemble 

average of 100 simulations of SST-dependent SLW model forced by the observed history of SST 

anomalies.. The model was constructed in the phase space of 100 leading EOFs of SLW. A 

typical (maximum) standard deviation of analogous SLW-only model’s ensemble-mean time 

series (not shown) is 0.25 (0.55) — both values are smaller than the standard deviations shown 

here.

Fig. 9. The results of PCR cross-validation for the main level of our quadratic SLW-only models. 

The number on the abscissa shows how many SLW PCs are included in the model. The dashed 

line denotes the total number of predictors in the equation for each PC. The error bar plot (light 

solid line) shows the optimal number of PCR components, with the central value being the 

average of this number over its individual estimates obtained for each PC equation, and the bar 

representing the standard deviation of these estimates. The straight heavy line is the optimal 
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linear fit of the dependence of the PCR-optimized number of components on the number of 

original variables (PCs) considered.

Fig. 10. PLS cross-validation results for the three-level empirical model with quadratic 

nonlinearity in the main level. The error bar plots show the mean and standard deviations of each 

quantity displayed computed using individual values of this quantity for each of the model 

equations (the number of equations is equal to the number of original PCs simulated by the 

empirical model). Left panels: the optimal number of PLS components; right panels: the 

percentage of variance unaccounted for by the regression; x-symbols show the results of PLS 

regression using the optimal number of latent variables, while the circles display the results of 

standard MQR, with all predictors considered.
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TABLE 1. Average number of initial-state resets for different empirical SLW-only models 

computed based on 100 surrogate simulations of a given model (see section 4a).

M 10 20 30 40 50 75 100

Linear 9 8 9 11 12 11 13

Quadratic 15 12 21 27 27 15 10

Cubic 9 25 35 48
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TABLE 2. The number of statistically significant coefficients of a three-level quadratic inverse 

model based on M leading PCs of SLW (see Appendix B for further details).

Level # of PCs 

(M)

# of all coeffs.

(K)

# of significant       

coeffs. (Ks)

(Ks/K) ×100%

Level 1 30 14940 2248 15

40 34520 3426 10

50 66400 4333 7

75 219600 4849 2

100 515300 4660 1

Level 2 30 1800 695 39

40 3200 994 31

50 5000 1415 28

75 11250 2834 25

100 20000 4986 25

Level 3 30 2700 393 15

40 4800 528 11

50 7500 688 9

75 16875 1235 7

100 30000 1923 6
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Fig. 1. Anomalies of atmospheric (SLW) and oceanic (SST) fields on 1 December 2002, 

computed as the deviations from the average over the 16-day period of 1–16 December 2002: (a) 

sea-level wind (SLW) anomaly; (b) sea-surface temperature (SST) anomalies. The two fields are 

spatially correlated, over the region shown, with the correlation coefficient of –0.73.
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Fig. 2. Low-order moments of SLW and SST anomalies: (a) time-mean SLW; (b) standard 

deviation of SLW; (c) skewness of the zonal component of SLW; and (d) time-mean SST.
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Fig. 3. Variances accounted for by the 100 leading EOF modes of (a,b) SLW and (c,d) SST; 

individual and cumulative variances appear in panels (a,c) and (b,d), respectively.
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Fig. 4. Leading EOFs of SLW: (a,b) EOFs 1 and 2; (c,d) EOFs 3 and 4.
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Fig. 5. Leading EOFs of SST: (a,b) EOFs 1 and 2; and (c) corresponding PCs (PCs 1 and 2 are 

shown as solid and dashed lines, respectively).
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Fig. 6. Integral correlation time scales of the leading 100 PCs for: (a) wind, and (b) SST.



51

Fig. 7. Probability density function (PDF; left panels) and autocorrelation function (ACF; right 

panels) of the observed and simulated zonal velocity anomalies at 120ºW and 55ºS. Solid lines: 

the observed functions; dashed lines: 95% spread based on SLW-only model with quadratic main 

level. The four rows show the results, from top to bottom, for the models constructed in the 

subspace of 10, 30, 50, and 100 PCs of SLW, respectively.
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Fig. 8. The standard deviation of the wind speed time series obtained by taking the ensemble 

average of 100 simulations of SST-dependent SLW model forced by the observed history of SST 

anomalies.. The model was constructed in the phase space of 100 leading EOFs of SLW. A 

typical (maximum) standard deviation of analogous SLW-only model’s ensemble-mean time 

series (not shown) is 0.25 (0.55) — both values are smaller than the standard deviations shown 

here. 
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Fig. 9. The results of PCR cross-validation for the main level of our quadratic SLW-only models. 

The number on the abscissa shows how many SLW PCs are included in the model. The dashed 

line denotes the total number of predictors in the equation for each PC. The error bar plot (light 

solid line) shows the optimal number of PCR components, with the central value being the 

average of this number over its individual estimates obtained for each PC equation, and the bar 

representing the standard deviation of these estimates. The straight heavy line is the optimal 

linear fit of the dependence of the PCR-optimized number of components on the number of 

original variables (PCs) considered.
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Fig. 10. PLS cross-validation results for the three-level empirical model with quadratic 

nonlinearity in the main level. The error bar plots show the mean and standard deviations of each 

quantity displayed computed using individual values of this quantity for each of the model 

equations (the number of equations is equal to the number of original PCs simulated by the 

empirical model). Left panels: the optimal number of PLS components; right panels: the 

percentage of variance unaccounted for by the regression; x-symbols show the results of PLS 

regression using the optimal number of latent variables, while the circles display the results of 

standard MQR, with all predictors considered.


