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1. Introduction

a. Motivation

This study addresses aspects of ocean—atmosphere interaction over the Southern Ocean using
measurements provided by satellite sensors. Our objective is to quantitatively describe and
analyze co-variability of sea-surface temperature (SST) and sea-level wind (SLW) in this region,
by developing inverse stochastic models that are derived directly from the remotely sensed data.
Empirical models of potentially SST-dependent SLW variability can help analyze the coupled
climate dynamics of the Southern Ocean, especially when combined with oceanic General
Circulation Models (GCMs).

Climate variability over the Southern Ocean is likely to be of global significance, due to
this ocean's special role in linking the Atlantic, Pacific, and Indian basins. However, progress in
understanding the dynamics of large-scale air—sea coupling over the Southern Ocean has been
slow, largely due to the very low density of in situ measurements in this region. Recently
launched NASA satellites provide accurate high-resolution global measurements of important
climatic variables such as SST and SLW. These global fields now permit the construction of
empirical air—sea interaction models for the Southern Ocean. Despite improved data coverage in
the region, estimating the propagator of the above mentioned statistical models remains an
ambitious and challenging task, since 1) there are still missing data due to the presence of strong
winds or heavy rains, and 2) such a model has to have an unprecedentedly large number of
degrees of freedom, due to high-dimensional nature of global-scale air—sea interaction. The
model construction thus requires major algorithmic revisions and gap-free datasets, which we

develop and describe in detail below.



b. Background

The Southern Ocean is the region south of roughly 30° S that includes the Antarctic Circumpolar
Current (ACC), along with the branches of circulations that link it to the Atlantic, Pacific, and
Indian Oceans (Schmitz 1996).

1) SATTELITE DATA OVER THE SOUTHERN OCEAN

Poor spatial coverage by in situ measurements in the Southern Ocean prohibits direct
comprehensive description of climate variability there. The data from NASA satellites launched
over the past decade thus provide a unique source of precise measurements of climatically
important quantities such as SST and SLW. Global coverage and fine resolution make them
extremely valuable for studying air—sea interaction in the Southern Ocean. In particular, the
microwave-based sensor AMSR on the AQUA satellite launched in 2002 samples SST field
under clouds — an opportunity that was previously unavailable for infrared-based SST records
over the typically cloudy Southern Ocean.

Microwave-based SST products (Kummerow et al. 2000; Wentz et al. 2000) have been
utilized before to explore tropical SST variations (Hashizume et al. 2000; Chelton et al. 2001;
Harrison and Vecchi 2001; Vecchi and Harrison 2002; Vecchi et al. 2003). We will use this type
of measurements in the present paper to address air—sea interaction over the Southern Ocean.

2) SOUTHERN OCEAN CLIMATE

The Southern Ocean is characterized by intense climatological westerlies that induce strong
meridional Ekman transports and drive the ACC. The modes of climate variability in the
Southern Ocean differ by their time scales and spatial signatures, as well as by specific
dynamical mechanisms. Synoptic variability, with a time scale of a few days, is comprised of

extremely powerful atmospheric storms associated with baroclinic Rossby waves passing over



the region. These synoptic eddies cause large-amplitude SST responses mainly through enhanced
vertical turbulent mixing in the oceanic boundary layer and through changes in the air—sea heat
flux. An example of such coherent patterns of wind and SST anomalies associated with synoptic
variability is shown in Fig. 1, which displays snapshots of these fields’ anomalies on 1
December 2002; the anomalies were computed relative to the base 16-day period of 1 — 16
December 2002. The pattern correlation between the SST and SLW fields over the region shown
in Fig. 1 is of about »=—0.73, which allows to reject the null hypothesis of zero correlation in

favor of the alternative of negative correlation at 0.1% level, according to the one-sided #-test

with n =16 degrees of freedom (the value of ¢ statistic is ¢ = rm » -4.3). The number of
spatial degrees of freedom within the region of interest in the above test was estimated based on
the de-correlation scale of about 1000 km.

On longer time scales, an intraseasonal mode of intrinsic atmospheric variability is called
the Southern Annular Mode (SAM). It has a pronounced zonally symmetric component, hence
its name (Thompson and Wallace 2000; Thompson et al. 2000). It is also known as zonal-flow
vacillation (Hartmann 1995) and consists of irregular meridional displacements of the
atmospheric jet. SAM is thought to be energized by higher-frequency synoptic eddies and may,
in turn, modify the storm track at lower frequencies (Robinson 2000; Lorenz and Hartmann
2001). Feldstein (2000) has argued that SAM variability is due to linear dynamical response to
stochastic forcing associated with synoptic eddies. In contrast, Koo et al. (2003) presented a
nonlinear framework for zonal-flow vacillation, based on the paradigm of weather regimes
(Reinhold and Pierrehumbert 1982; Legras and Ghil 1985; Marshall and Molteni 1993; Koo and

Ghil 2002; Kravtsov et al. 2005a). Hall and Visbeck (2002) discussed the dynamics of oceanic



response to SAM-type surface-wind evolution, and reported significant variations in SST, sea-ice
extent and ACC transport associated with this variability.

Even longer-term modes of variability include the so-called semi-annual oscillation (Van
Loon 1967, 1972; Meehl 1991; Meehl et al. 1998) and the Pacific—South American (PSA)
oscillation (Mo and Ghil 1987) often described as a tropically forced standing wave train (Mo
and White 1985; Mo and Ghil 1987; Karoly 1989; Grimm and Silva Dias 1995; Garreaud and
Battisti 1999). The PSA has also been associated with an El Nifio/Southern Oscillation (ENSO)
teleconnection pattern (Kwok and Comiso 2002) and has signatures in the Southern Ocean's
surface air temperature, SST and sea-ice extent; these signatures are referred to as the Antarctic
Dipole (Yuan and Martinson 2000, 2001). Finally, the Antarctic Circumpolar Wave (ACW) has
an interannual time scale and is associated with eastward-propagating signals in SST, sea-level
pressure, and sea-ice extent (White and Peterson 1996; Jacobs and Mitchell 1996; Peterson and
White 1998).
3) AIR-SEA COUPLING OVER THE SOUTHERN OCEAN
Synoptic eddies and the lower-frequency SAM that dominate climate variability in the Southern
Ocean on weekly-to-intraseasonal time scales are due primarily to intrinsic atmospheric
dynamics. Surface manifestations of these modes induce significant oceanic response. The SST
variability associated with this response affects, in turn, the atmospheric flow. Additionally, the
SLW variability may be modified, on an intraseasonal-to-interannual and longer time scale, by
SST anomalies associated with intrinsic oceanic or inherently coupled processes, such as the
PSA and ACW.

Surface wind influences SST directly by modifying vertical turbulent heat exchange

between the two fluids (Gill 1982; Arya 1988) and inducing strong horizontal Ekman transports



in the oceanic mixed layer. High-frequency wind forcing also leads to significant long-term
oceanic changes by affecting, among other things, the seasonal-mean subsurface temperatures
and mixed-layer depths (Kamenkovich 2005). In addition, surface-wind fluctuations can energize
intrinsic oceanic modes, which may play an important role in the dynamics of the Southern
Ocean (Wunsch 1999; Weisse et al. 1999; Karsten et al. 2002; Gille 2003). The SST signatures
of these modes have structures that are different from that of a local SST response to wind
forcing. These oceanic phenomena have long intrinsic time scales and may thus lead to partial
predictability of the Southern Ocean climate.

The way SLW may respond to SST anomalies is via changes in stability of the marine
atmospheric boundary layer. Air passing over a positive SST anomaly becomes more unstable;
this leads to anomalous turbulent momentum flux and amplification of the surface wind (Arya
1988). This effect was shown to be at work over the Eastern Tropical Pacific (Wallace et al.
1989; Liu et al. 2000; Chelton et al. 2001; Hashizume et al. 2001) and over the Southern Ocean
(O'Neill et al. 2003) on seasonal-to-interannual time scales. Other dynamical factors may also
contribute to this response at all time scales (Hsu 1984; Lindzen and Nigham 1987; Mitchell and
Wallace 1992).

The SST-induced modifications of the atmospheric boundary layer may cause changes in
the free atmosphere's circulation. The linear response is expected to be weak, but nonlinear
modes of atmospheric variability, such as SAM, may produce a stronger effect (Koo et al. 2003;
Kravtsov et al. 2006a,b). Feliks et al. (2004, 2007) have shown, in particular, how an oceanic
thermal front may induce intraseasonal variability in the overlying atmosphere, including

surface-wind evolution.



To summarize, the Southern Ocean is characterized by vigorous variability on a wide
range of time scales. Air—sea interaction in the region is complex and difficult to represent in
dynamical models, as it involves a wide variety of boundary layer processes, as well as their
coupling to intrinsic dynamics of the fluids on both sides of the ocean—atmosphere interface.
Statistically, however, these interactions may well be described by joint variability of SLW and
SST. A purely empirical model of this co-variability, based on recent high-quality satellite
observations, could provide an accurate quantitative description of air—sea interaction without
having to resolve explicitly the complex chain of participating dynamical processes.

4) EMPIRICAL STOCHASTIC MODELS OF SST AND SLW

Data-based inverse stochastic models used in climate dynamics generally belong to one of the
two major groups: (i) multivariate parametric models with additive, state-independent noise, the
simplest of which is the so-called linear inverse model (LIM) (Penland 1989, 1996; Penland and
Sardeshmukh 1995; Penland and Matrosova 1998; Winkler et al. 2001); and (ii) nonparametric,
univariate or bivariate models involving state-dependent, multiplicative noise (Sura 2003; Sura
and Gille 2003; Sura et al. 2006; Sura and Newman 2008; Sura and Sardeshmukh 2008). Both
types of models can be useful in addressing various aspects of climate variability, but are very
different in terms of how they are constructed, as well as in their potential applications.

In particular, the models with multiplicative noise consider the time series of a variable of
interest (for example, u-component of surface wind, or SST) at a single spatial location, and
estimate state-dependent drift and diffusion parameters of the stochastic differential equation
(SDE), which presumably governs the evolution of this variable. In order to get reliable estimates
of model parameters given relatively sparse observations, as is the case for Southern Ocean

winds, one may concatenate data sets from multiple locations, which are situated far enough so



that their respective time series may be assumed to be uncorrelated (Sura 2003). The scalar SDEs
so obtained describe local features of interactions between processes evolving on different time
scales. They are particularly successful in interpreting some of the nongaussian aspects of both
SLW (Sura 2003; Monahan 2004, 2006a,b) and SST (Sura et al. 2006; Sura and Newman 2008;
Sura and Sardeshmukh 2008) variability. The multiplicative noise in the above studies is
attributed to random fluctuations of the drag coefficient or air—sea heat exchange coefficient.

On the other hand, multivariate parametric models driven by additive noise are usually
constructed in the phase space of the leading empirical orthogonal functions (EOFs)
(Preisendorfer 1988) of the field(s) of interest, thus addressing non-local aspects of the
variability under consideration. This non-locality comes at the expense of a fairly restrictive
parametric dependency of the system's tendency on its state. In LIMs, for example, this
dependency is assumed to be linear, while the model coefficients and noise parameters are found
by multiple linear regression (MLR). LIMs driven by Gaussian stochastic forcing cannot model
the nongaussian aspects of the observed statistics, but more general, nonlinear empirical
parametric models can. Kravtsov et al. (2005b) developed a methodology for constructing such
nonlinear empirical models, which also addresses some other weaknesses of LIMs. This
methodology showed excellent results when applied to the problems of mid-latitude variability
of geopotential heights (Kondrashov et al. 2006), as well as to describing tropical SST evolution
(Kondrashov et al. 2005).

c. This paper
The purpose of the present paper is to construct an empirical model of SLW variability over the
Southern Ocean by using concurrent high-quality satellite measurements of SLW and SST.

Doing so requires the use of recent microwave-sensed SST fields available after the launch of



AQUA in June 2002. Since only about 5 years of such data are available, we do not attempt to
develop a closed model that would simulate by itself long-term aspects of SLW-SST co-
variability, such as ACW; this would require a much longer data set with enough degrees of
freedom to capture interannual SST signals. Instead, the quantities involving SST observations
will serve as predictors in the stochastic model of SLW evolution; the time-dependent SST
anomalies themselves will be treated as given. We will show that this model is capable of
reproducing the statistics of daily-to-intraseasonal SLW anomalies. As a brief introductory
illustration of one of many potential uses of the empirical model constructed, we will present
some evidence for large-scale oceanic imprint onto the atmospheric variability in the Southern
Ocean by comparing the statistics of an SLW-only empirical model with that of a model forced
by the daily history of SST anomalies.

Our statistical SST-dependent SLW model will also be able to capture some aspects of
air—sea interaction and longer-term variability when coupled to a dynamical oceanic component.
Experiments with such a coupled dynamical-statistical model will be studied in a future paper.
The application of our statistical model as a component of a hybrid coupled GCM requires that
both local and non-local aspects of SLW variability and its coupling with SST variability be
comprehensively represented in the empirical model. We will therefore build upon the
methodology of Kravtsov et al. (2005b) to construct this model. As we have mentioned at the
end of section la, the high-dimensional nature of basin-scale air—sea coupling in the Southern
Ocean region prohibits direct application of Kravtsov et al. (2005b) method and requires major
modifications to the model construction algorithm; these changes, when applied to gap-free
satellite datasets with missing data filled-in by M-SSA (Kondrashov and Ghil, 2006), are

essential in obtaining stable estimates of the empirical model propagator.



The rest of the paper is organized as follows. Section 2 describes the data sources, pre-
processing and gap-filling methodology, as well as the data set’s basic statistics. Section 3
outlines general, as well as novel technical aspects of the empirical stochastic model
construction, with methodological details given in the appendices. The performance of our
empirical models is evaluated in section 4, while section 5 summarizes our results and elaborates
on their significance.

2. Data, pre-processing methodology, and basic statistics
a. Data sources
The gridded data products used in this analysis are obtained from the Remote Sensing Sytems

website (http://www.ssmi.com). The SST data are taken from the AMSR-E ocean data product

(Version-5) for the time interval from June 2002 to February 2007 (Kawanishi et al. 2003).
Missing data are due to sun glint, heavy rain, proximity of ice edge, and winds greater than 20 m
s'. The wind speed and direction at 10 m above sea level are obtained from the QuikSCAT
scatterometer dataset (Liu 2002). The geophysical data record began on July 1999; for the
analysis in this paper, we use data for the time interval that overlaps with that of the AMSR-E
dataset. Although the scatterometer data tend to be less accurate in the presence of rain, we do
not remove such data entries, since our statistical technique is based on analyzing spatial
covariances within the fields considered; the small-scale random errors associated with rain
occurrences will thus be effectively filtered out.

Both gridded data sets are available on a 0.25°%0.25° grid twice a day, on ascending and
descending paths. For our subsequent analyses, the data were averaged in space and time to

produce daily values on a 2°%2° grid.
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b. Filling the missing data

While recent satellite observations over the Southern Ocean do have a previously unprecedented
quality, there are still gaps in data coverage in the presence of heavy rains or strong winds;
specifically, about 40% of the points in the SST data set and 20% in the SLW data set were
missing. In order to fill these gaps in the data, we used the methodology of Kondrashov and Ghil
(2006). Their algorithm is based on multi-channel singular spectrum analysis (M-SSA) (Ghil et
al. 2002) and takes advantage of both spatial and temporal correlations in the existing data to
iteratively produce estimates of missing data points, which are then used to compute a self-
consistent spatiotemporal lag-covariance matrix; cross-validation is applied to find the optimal
window width and number of dominant M-SSA modes to fill the gaps.

The missing data have been filled-in for SLW and SST fields separately; that is, cross-
correlations between these two fields were not exploited. Since the total number of spatial grid
points exceeds the temporal length of the data set (in days) for both SLW and SST, we utilized
the “reduced-covariance” approach (Ghil et al. 2002) to compute the spatio-temporal lag-
covariance matrix. Based on the results of cross-validation experiments, we chose the lag of 1
day and 300 M-SSA modes for filling SLW components and the lag of 5 days and 160 M-SSA
modes for SST. The domain-averaged root-mean-square (rms) error for filled-in values is
estimated to be 0.44°C for SSTs and 1.7 ms™' for SLW components.

c. Basic statistics

1) FILTERING

We considered continuous, filled-in by M-SSA data sets of daily SST scalars and SLW vectors
ona 2" 2°grid (65°-30°S), for the period of 1 June 2002 — 13 February 2007, for a total of 1719

days. We first removed the seasonal cycle by retaining, at each grid point, only the residual of
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the multiple linear regression of the original, unfiltered time series onto a ten-variable “seasonal
cycle” time series. The latter time series had the form (sin(2pnt/ 365), cos(2pnt /365)), where
time ¢ is measured in days and changes from ¢ =0 to = 1718, while n = 1, 2, 3, 4, 5. The filtered
versions of the original SST and SLW time series were then also linearly detrended to get rid of
secular variability, since our statistical models are assumed to be stationary.
2) LOW-ORDER MOMENTS
Figure 2 shows a few of low-order moments of the filtered anomalies so obtained. The time-
mean wind is plotted in panel (a), with the wind speed given by color shading, and the direction
of the wind by arrows. The winds are predominantly westerly, as expected, and their spatial
pattern represents a mid-latitude jet, whose axis is located at about 50°S between South America
and Australia, and at about 55°S elsewhere; the strength of the jet in the latter region is somewhat
weaker, with the exception of even weaker time-mean winds just east of South America. The
standard deviation of the wind speed shown in panel (b) is fairly uniform throughout the
Southern Ocean, with the most intense variability south of the stronger portion of the jet, and the
weakest variance at the northern edge of the Southern Ocean. Modern data sets thus indicate that,
at the 2° 2° resolution used here, the “furious fifties” are much more intense than the “roaring
forties” of sailing days. Moreover, at this resolution and on a 5-yr average, winds off Cape Horn
or the Cape of Good Hope are not particularly strong, although their standard deviation is
maximal off Cape Horn and above the Agulhas Current, east and south of the Cape of Good
Hope.

Color shading in panel (c) shows the distribution of the skewness of the zonal component
of the surface wind, which is found to be negative in the majority of the basin. Monahan (2004)

explains this property of the zonal-wind anomalies in terms of a nonlinear surface drag law:
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according to this law, positive anomalies in u in the region with positive time-mean zonal winds
will be subjected to stronger friction than negative anomalies, so that the resulting u-wind
distribution will be negatively skewed.

The time-mean SST field (Fig. 2d) is consistent with the climatological wind (Fig. 2a) in
that the strongest SST front is co-located with the strongest zonal jet, south of Africa and further
eastward, at 40°S. This is presumably the region of the strongest ACC as well. The north—south
SST gradients elsewhere are weaker. The SST variance (not shown) is largely uniform
throughout the Southern ocean, with values around 1-2° C.

3) PRINCIPAL COMPONENT (PC) ANALYSIS

Prior to computing the EOFs and PCs of SLW and SST, we multiplied the time series of these
quantities at each grid point by the square root of the cosine of its latitude, to account for the
meridian convergence and get area-weighted grid-point contributions to the total variance of
each field. The EOFs of SST and SLW were computed separately, and we used the combined (u,
v) field to compute the latter. The percentages of variance accounted for by the first 100 EOFs of
SLW are shown in Figs. 3a,b, while the analogous plots for SST EOF are in Figs. 3c,d.

Two leading SLW EOF pairs are somewhat separated from each other and from the rest
of the modes (Fig. 3a) and together account for about 20% of the total SLW variance (Fig. 3c).
These two pairs are associated with the leading synoptic disturbances in the “weaker jet”
(160°W—80°W) and “stronger jet” region (40°W—130°E), respectively; compare Fig. 2a and Fig.
4. Spatial analysis of Figs. 4a,b and 4c,d shows that these two modes are characterized by zonal
wave numbers 8 and 9, respectively. For the SST, only two leading EOFs stand out from the rest
(Fig. 3c), and account for about 12% of the total SST variance (Fig. 3d). Both of these EOFs

have a wavelike pattern with dominant zonal wavenumbers 3—4 (Figs. 5a,b) and pronounced
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interannual variability (Fig. 5c) suggesting their possible association with the ACW. The EOF
spectrum becomes fairly flat roughly beyond mode 40 for SLW and mode 20 for SST. The
leading 100 EOFs account for about 80% of the total variance of both fields.

Figure 6 shows integral correlation time scales Tiy of the leading 100 EOFs of SLW in

panel (a) and SST in panel (b). The quantity 7i, was defined as T, = é 10:01| c(t)Pt, where c(t)

nt

is the autocorrelation of a given PC at the lag ¢ (in days), and Dt =1 day. In general, the integral
correlation time scale of the trailing modes is shorter than that of the leading modes, for both the
SLW and SST PCs, although the dependence of Ty on the mode number is not monotonic. The
leading EOF pairs of SLW have time scales of about 5.5 and 4 days, respectively, while the
leading EOF pair of SST is characterized by Tine = 60 days. The latter estimate is an order of
magnitude longer than the maximum T7i, of the SLW EOFs, which is of about 7 days.
Hasselmann (1976) introduced a null hypothesis for low-frequency variability SST anomalies,
which involved integration of fast and essentially random air—sea heat fluxes by an ocean mixed
layer. The fast random heat flux forcing was associated with SLW variability, while the longer
time scale of SST anomalies arose due to ocean mixed layer’s thermal inertia. We argue that
leading SST modes are not consistent with this null hypothesis for two reasons: (i) the
Hasselmann mechanism is local, implying positive spatial correlations between SLW and SST
patterns, whereas the patterns in Figs. 4 and 5a,b are not so correlated; and (ii) the interannual
time scales of the leading SST modes (Fig. 5c) are longer than those associated with mixed layer
thermal inertia. We thus conjecture that the leading SST modes arise from intrinsic ocean
dynamics.

In fact, the arguments of the latter paragraph apply to most of the SST EOFs, more so for

leading modes, and to a somewhat smaller degree for the trailing modes. The empirical
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stochastic models of SLW constructed in the next section will include the dependence on SST
anomalies that span the subspace of their leading K EOFs, with K = 50 and K = 75. Therefore,
any sensitivity of the SLW variability produced by empirical stochastic models to these SST

anomalies should be interpreted as that caused by SST variability, rather than vice-versa.

3. Construction of empirical stochastic models
a. General methodology
We construct empirical stochastic models in the phase space of M leading EOFs of SLW, for
various values of M (10-100), following the general methodology of Kravtsov et al. (2005b). In
order to do so, we first form daily tendencies of N leading PCs of SLW: the tendency at day #,
for example, is approximated as the difference between the value of a given PC at day n+1 minus
the value of this PC at day n. The M time series of tendencies so obtained represent our response
variables.

We will consider several versions of the empirical models. In the simplest, linear case,
the main level of the empirical model is obtained by multiple linear regression (MLR) of each

response variable onto M leading PCs of SLW, resulting in an equation of the form

Xn+1 _ Xn :B' Xn +rn’ (1)

where x is an M-component vector of the leading PCs, B is an M~ M matrix of the regression
coefficients, while r is the vector of M residual time series uncorrelated with each of the
predictor variables; as before, n is the time index (in days). If we model r as vector-noise dw
that is white in time, but spatially correlated, then the formulation of Eq. (1) is a so-called linear

inverse model (LIM) of SLW variability. The spatial correlation refers to that between the
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different components of the residual time series in r (and dw). Given random realizations of the
forcing dw, the LIM (1) can be integrated to produce surrogate time series of the M leading PCs
of SLW, which can then be translated into variable SLW patterns in physical space by summing
the SLW EOFs multiplied by the value of the corresponding surrogate PC at a given time. The
statistics of such surrogate SLW realizations can then be compared to that of the observed
anomalies to judge the performance of the LIM.

Kravtsov et al. (2005b) introduced several improvements to the LIM (1). In particular, it
often happens that the autocorrelation of the residuals at nonzero lags is not negligible. In order
to address this problem, Kravtsov et al. (2005b) proposed to construct an additional level of the
inverse model; at this level, the tendencies of the main-level residuals are modeled as a linear
function of the extended state vector [x";r"], consisting of the M original PCs, plus M first-level
residuals:

r'r" =B, X4+ (2)
This exercise produces M second-level residuals: if the latter are not white in time, their
tendencies can in turn be modeled as a linear function of the extended state vector consisting
now of the M original PCs, M first-level residuals, as well as M second-level residuals.
Additional levels can be added in the same way until the residual time series becomes white in
time. Note that this procedure is different from merely modeling the main-level residual as
colored noise, since it also takes into account any hidden dependency of the residual tendencies
on the main-level PC predictors.

Another modification, which proved useful in modeling tropical SST evolution in
Kondrashov et al. (2005), consisted of the inclusion of an explicit seasonal cycle. Despite our

having removed the explicit seasonal cycle from the SLW fields prior to constructing our
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empirical stochastic model, the parameters of this model may still have some seasonal
dependence. Kondrashov et al. (2005) found that the optimal way to incorporate such
dependence is two include, at the main level of the model, two additional predictors, namely
sin(2pt/365) and cos(2pt/365). The remainder of the procedure is unaltered, and the
construction of the additional levels of the empirical stochastic models proceeds as described
above.

Finally, the most significant modification of LIM methodology in Kravtsov et al. (2005b)
was to consider nonlinear combinations of basic predictors. For example, one can include, in
addition to M predictor variables (PC-1-PC-M), all possible quadratic combinations of PCs: the
product of PC-1 with all of PC-1-PC-M, plus the product of PC-2 with PC-2-PC-M, and so on.
Using index notations for vectors, matrices, and tensors, and assuming implicit summation over
repeating indices, the modified main-level equation can be written as
X' -x; = aijkx_;fx,’{’ +b!/x_rf te +r. 3)
The coefficients of such a regression model are also found by the MLR procedure; however,
since this procedure now employs an extended vector of predictor variables and their quadratic
combinations, it is called multiple quadratic regression (MQR). Kravtsov et al. (2005b) argued
that it is best to restrict the nonlinear modifications to the main level of the empirical model,
while the construction of additional levels proceeds as before. The main advantage of a nonlinear
empirical model is that it can address nongaussian aspects of the observed variability. Its main
disadvantage is a potentially much larger number of predictors: in a quadratic model based on M
PCs and including two periodic seasonal cycle variables and a constant forcing term, the number
of predictors is M~ (M +1)/2+ M +3, and so is the number of coefficients that need to be

determined by the regression procedure for each of the M response variables. Kravtsov et al.
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(2005b) argued that this problem may be efficiently addressed by a variety of regularization
procedures that allow one to avoid overfitting and construct nonlinear multi-level stochastic
models with optimal predictive capabilities. We built on this approach here to develop a novel
regularization algorithm for robust estimation of empirical model coefficients (see the
appendices).
b. Stochastic model versions
Using the regularization methods described in appendix A, we have constructed several
empirical model versions, which differed by the number of PCs considered, the order of
nonlinearity at the main level of the model, and the presence or absence of the dependence on
SST. All models had three levels, with levels 2 and 3 being linear. The SLW-only models with
linear and quadratic main level were obtained in the subspace of M=10, 15, 20, 25, 30, 35, 40,
45, 50, 75, and 100 PCs, and the cubic models for all of the above M £ 40.

We found that the performance of all these model versions is very similar, for a given M.
This result argues for using the linear SLW-only model, because it has the simplest form and the
smallest number of coefficients; hence, it is more reliable and easily implemented than nonlinear
models. The SLW model with SST dependence was based on M = 100 leading PCs of the SLW
field — x, and L = 50 or L = 75 leading PCs of the SST field — y The main level of the SST-
dependent SLW model included linear dependence on SLW and SST PCs, the cross-product of
each SLW PC with each SST PC, constant forcing term, and two seasonal cycle variables; no
quadratic combinations of SLW PCs or SST PCs were used as predictors:

n+l

X/ -x] Zayxiy Hbpx’ by +c;sin(2pt, /365)+c; cos(2pt, /365) +c, +r1. 4)
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4. Performance of empirical stochastic models

a. Simulation procedure

Empirical models constructed using the methodology described in the previous section and the
appendices were used to produce 100 surrogate simulations of SLW variability, each of these
simulations being 1719-day long. Despite the regularization applied when constructing
regression models, a few of the simulations using nonlinear models exhibited instability. In order
to avoid such situations altogether, we have used the following procedure.

The models were integrated forward for ten days starting from random initial states. If at
any time during this ten-day period either (i) the absolute value of any simulated PC exceeded
some threshold value, set to be the same for all PCs; or (ii) the absolute value of any simulated
second-level variable exceeded another threshold value, again the same for all components of the
second-level vector; or (iii) the third-level variables exceeded their own threshold value, then this
ten-day simulation was discarded and restarted from another random state. The procedure was
repeated as many times as necessary until a ten-day simulation with the values of all variables
within the specified range was obtained.

The threshold value for the PCs was computed as the observed maximum of the absolute
value, over all the PCs and during the whole observational interval; the threshold values for the
second and third-level variables were computed in the same way using “observed values” of
these quantities. We kept track of the number of times the threshold condition above was
violated, during each of 1719-day surrogate simulations. Table 1 lists the average values of this
number for the simulations using linear, quadratic, and cubic SLW-only models. The average is

computed over 100 available realizations of each empirical model.
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In general, the number of initial-state resets is small, on the order of 10-20 resets during
1719-day-long simulation. Note that the resets do not always reflect instability — our linear
model is, for example, always stable, in agreement with LIM theory (Penland 1989, 1996;
Penland and Ghil 1993), but it still produces the values that exceed chosen thresholds from time
to time. On the other hand, the cubic model for M = 35 and 40 does run out of control and may
produce unbounded realizations of the simulated fields. Finally, the models that include SST
forcing are not listed in Table 1, because they never produce realizations that exceed the
threshold values. This fact suggests that coupling with SST is important for properly modeling
SLW variability (see also section 4c).

b. Daily-to-monthly aspects of SLW variability

We illustrate the performance of the empirical models by examining first local aspects of the
simulated SLW variability. Figure 7 shows probability density function (PDF; left panels) and
autocorrelation function (ACF; right panels) of the observed and simulated zonal velocity
anomalies at 120°W and 55°S — in the middle of an intense-jet region (see Fig. 2); the
correspondence at other locations is qualitatively and quantitatively analogous. The heavy solid
line in all the plots shows the observed PDF or ACF, while the dashed lines mark the 95% spread
in these quantities obtained from 100 realizations of the quadratic SLW model. The four top-to-
bottom rows of Fig. 7 display the results from the empirical model based on M = 10, 30, 50, and
100 SLW PCs, respectively.

The empirical model of 10 leading PC components of SLW (upper row) produces a time
series with a substantially smaller variance of the wind at the given location, while the time scale
of SLW anomalies there is overestimated. Both of these results are to be expected, since the

leading SLW EOFs account for a limited fraction of total variance (Fig. 3) and are generally
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characterized by the longest time scales (Fig. 6). Including progressively more components into
the empirical model achieves continuous improvement of these two characteristics of SLW
variability, with the 100-component model capturing quite well both the variance and the time
scale of SLW anomalies. None of the model versions, however, captures the observed negative
skewness of the zonal-velocity distribution. In fact, the quadratic model PDFs are essentially
Gaussian and very similar to the ones obtained using simulations of the cubic and linear models
(not shown).

We have tried a number of ways to better capture the skewness of the zonal-wind
anomalies in our empirical models. These attempts included choosing a different EOF basis,
which arranged the SLW patterns so that each of them would capture a significant fraction of
variance, while having maximally skewed distribution, as well as blending our multi-level model
methodology with the multiplicative-noise techniques of Sura and collaborators (see section 1b),
but still failed to reproduce the negative skewness of the zonal-wind anomalies. We think that the
reason for this failure is that the dynamics behind this negative skewness is essentially local, as it
involves the effectively larger surface drag for positive u-wind anomalies in the region of the
positive time-mean u-wind (Monahan 2004). Considering the anomalies in the EOF basis does
not optimally represent such local dynamics: Each of the PCs turns out to possess skewness
values smaller than the typical skewness of the zonal wind at a certain grid point, and this
skewness is identified by the regression procedure as negligible; hence, this non-Gaussian aspect
of zonal-wind behavior is not properly represented in our empirical models. Non-local dynamics,
though, are well represented in our statistical models of SLW evolution, as we will see in section

4c.
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The correspondence between the observed and simulated statistics for meridional SLW
components is similar or better than that in Fig. 7 (not shown), since the meridional wind
distribution is generally more gaussian. Similar results are also obtained for other locations in the
Southern Ocean (not shown). These local results are essentially indistinguishable between all
versions of the empirical models including the SST-dependent version, given the number of
SLW PCs considered.

c. SST effects on SLW evolution

We show here some preliminary evidence for the substantial oceanic imprint onto Southern
Ocean’s SLW variability; this oceanic effect is a necessary condition for the existence of active
ocean—atmosphere coupling there. In order to do so, we have computed ensemble-averaged
evolution of the SLW anomalies for a 100-member ensemble using the empirical stochastic
model forced by the history of the observed SST anomalies, as well as this evolution for the
SLW-only stochastic model. We then computed the standard deviation of the ensemble-averaged
wind speed for both cases, at each grid point: the results of this computation for the SST-
dependent SLW model are shown in Fig. 8. The standard deviation in the SST-dependent case is
much larger, at all grid points, than that in the SLW-only case (not shown), and exhibits a
distinctive large-scale spatial pattern, suggesting this SLW variability is forced by long-term,
ocean-induced SST anomalies. We plan to address this intriguing behavior in a future paper (see
section 5).

In summary, the model constructed in the phase space of 100 leading EOFs of SLW and
including, in addition, linear and bilinear interactions with SST anomalies restricted to the
subspace of 75 leading EOFs of SST, as well as the seasonal effects, is stationary and captures

several local and non-local aspects of SLW evolution, on all time scales. We plan to use this
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model as the atmospheric component of a hybrid coupled model in which the oceanic component

will be a state-of-the-art GCM (see section 5).

5. Summary and discussion

We have analyzed five years of remotely sensed data sets of sea-surface temperature (SST) and
sea-level wind (SLW) over the Southern Ocean; the microwave sensors installed on recently
launched NASA satellites provide an unprecedented quantity and quality of observations in the
region. The missing data due to heavy rains or cloud coverage has been filled-in by singular
spectrum analysis (SSA). The main technical outcome of this investigation is the construction of
a statistical, stochastically forced model of SLW over the Southern Ocean; the model
construction algorithm uses a number of essential innovations required to obtained robust
estimates of the model’s propagator. This model captures detailed features of SLW variability on
a wide range of time scales, from daily to interannual, and spatial scales spanning the range from
the atmospheric Rossby radius to the basin scale. The model also accounts for ocean—atmosphere
coupling via dependence of SLW equations on the SST anomalies.

The model’s potential in helping to interpret observed evolution of Southern Ocean’s
climatic variables is briefly illustrated by identifying substantial oceanic imprint onto SLW
variability, which may be indicative of possible coupled ocean—atmosphere effects in the
Southern Ocean: ensemble averaging over 100 simulation of the statistical model forced by the
observed SST anomalies reveals variability of a large magnitude and distinctive spatial pattern.
The analogous ensemble average based on simulations of the SLW-only model is characterized

by a very small magnitude and a lack of spatial coherence.
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The construction of the above statistical models is rooted in the empirical methodology of
Kravtsov et al. (2005b) and Kondrashov et al. (2005, 2006); however, the model construction
algorithm is substantially modified and improved here in a number of ways that help choose the
optimal model structure (see the appendices). The most comprehensive statistical model operates
in the subspace spanned by 100 leading empirical orthogonal functions (EOFs) of the daily SLW
over the Southern Ocean, thus modeling the evolution of 100 corresponding principal
components (PCs); the seasonal cycle was removed from all fields prior to performing the
principal component analysis.

The model equations relate the time derivative of each PC to the right-hand side
consisting of three parts: the part that depends on SLW only, the SST-dependent part, and the
variable forcing term. The first part is approximated as a linear function of all PCs of the SLW
field. The dependence on SSTs is modeled as the linear function of the leading 75 PCs of the
SST, plus bilinear terms involving the cross-product of SLW and SST PCs; since this part is
nonlinear, the seasonally dependent forcing term is also included. The variable forcing that
drives the variability in the model is simulated in a separate set of equations that relate the time
derivative of each component of the forcing vector to the linear function of SLW and SST PCs,
as well as the forcing vector itself, and also include the second-level variable forcing. The
second-level forcing’s tendency is in turn modeled linearly in a way analogous to the main-level
forcing, while the variable forcing at this last, third level of the model is approximated as
spatially coherent noise that is white in time. The construction of this statistical model involved a
novel multi-step regression algorithm to compute the coefficients of the model’s propagator, as

well as to determine the parameters of the noise.
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We plan to use the statistical model constructed in the present study to further investigate
the dynamics of ocean—atmosphere interaction over the Southern Ocean. In particular, our
current results may suggest the presence of active coupling in the region by identifying a
nontrivial SLW response to the observed SST anomalies, although Bretherton and Battisti (2000)
proposed alternative explanations to such findings. Goodman and Marshall (1999), on the other
hand, formulated a theory of interannual-to-decadal coupled variability that is potentially
applicable to the Southern Ocean. This theory predicts the existence of coupled modes, given a
certain spatial phase relationship between SST patterns and SST-induced SLW anomalies; this
phase relationship gives rise to Ekman pumping anomalies that force and modify the oceanic
circulation and the associated SST field. It would be interesting to check whether we can detect
such a phase relationship in our statistical model.

Another very promising way to apply our empirical SLW model is to couple it to an
oceanic GCM. We plan to achieve this coupling by blending the SST-dependent SLW model
with atmospheric boundary layer model of Seager et al. (1995). The latter model needs the
specification of boundary-layer winds to compute ocean—atmosphere heat fluxes. These winds
will be supplied by the statistical model, and will also be used to compute the atmosphere—ocean
momentum flux. The ocean model forced by heat, moisture, and momentum fluxes will predict
the evolution of the SST field, which will, in turn, affect the future SLW anomalies. The
experiments with such a hybrid coupled GCM of the Southern Ocean regions may provide
invaluable insights into the dynamics of climate variability there.
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APPENDIX A
PCR and PLS regression

The main regularization tool is cross-validation, in which one chooses randomly a subset of the
vector time series (in the analyses below, we typically consider 80% of original data points),
applies a given regression technique, and then uses the regression model to reconstruct the
segments of the time series that were omitted in the model identification step. The performance
of the regression technique may then be assessed according, for example, to the smallness of the
differences between the regression-based prediction and the actual values of the time series. We
will use cross-validation in a number of different ways when constructing the empirical models
below.

A major problem in applying MQR or MLR based on a large number of predictors is
multi-collinearity (Press et al. 1994). This problem can be avoided by finding linear
combinations of original predictors in such a way that their time series are uncorrelated, while
each linear combination accounts for the maximum possible amount of the total variance. A
natural way to determine this modified set of predictors is to apply principal component analysis
to the original vector of predictors, and then use cross-validation for finding the optimal number
of PCs to retain in the regression; this procedure is called the principal component regression
(PCR). Note that since we construct our empirical models in the phase space of the data set’s
EOFs, the predictor variables in an LIM are already uncorrelated. On the other hand, the MQR
predictors are the original set of PCs augmented by their quadratic combinations. Therefore,
applying principal component analysis to this new multivariate data set generally produces a

different set of predictors.
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The PCR results for MQR based on several numbers of PCs, M=10, 15, 20, 25, 30, 35,
and 40, are displayed in Fig. 9; the values of M are shown on the abscissa of this graph. We
computed the optimal number of PCR predictors for each of the M equations of the quadratic
regression model. We thus obtained, for the model describing the evolution of M leading SLW
PCs, M estimates of the optimal number of PCR components. The error bar plot in Fig. 9 shows
the average value of this number over the M available estimates, along with its standard
deviation. The dependence of the optimal number of PCR components on the number of original
PCs is very well approximated by a linear fit (heavy solid line); this number is much smaller, for
large M, than the maximum possible number of variables, which is equal, for MQR,
toM™ (M+1)/2+ M+ 3.

PCR does a fairly good job in picking the smallest set of uncorrelated predictors that
capture most of the variance. However, the choice of the PCR predictors does not involve at all
the information about how well these predictors are correlated with the response variable. The
procedure that does take into account this additional information is called partial least-squares
regression (PLS); see Abdi (2003) for a brief, but comprehensive review. We apply PLS to the
set of optimal predictors determined via PCR cross-validation (Fig. 9), rather than to the original,
much larger set of predictors.

Similarly to the PCR procedure, the leading PLS predictor is defined as a linear
combination of the original predictor time series, but in this case the quantity being maximized is
the correlation between this time series and the predictor time series. We found that applying
PLS to each response variable individually produces better results than the matrix formulation of
the PLS algorithm, which also considers linear combinations of all response variables and finds

two sets of coefficients that define the mode of response and the mode of predictor variables that
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are maximally correlated (Abdi 2003). In the general multivariate case, the weights of the
leading PLS mode are found using Singular Value Decomposition (SVD) as the first right
singular vector of the matrix X'Y, where X and Y are the matrices whose columns are the time
series of the predictor and response variables, respectively. The right singular vectors of X'Y
defines the weights for the response variables; in the univariate case, the single such weight is
naturally equal to 1.

The time series of the leading PLS mode is obtained by summing the original time series
of the predictor variables with the weights obtained as above. The signal associated with the
leading PLS mode is then regressed out of both the response variable(s) time series, and all the
predictor time series; this is done, once again, by only retaining the residual of the linear
regression of each of these time series onto the time series associated with the leading PLS
mode. The above procedure is then applied to the “reduced” response and predictor time series to
obtain the next PLS mode, and so on to obtain all the PLS modes. The optimal number of modes
to retain in this procedure is also determined by cross-validation.

The PLS cross-validation results for the main level of the quadratic models based on
M=10, 15, 20, 25, 30, 35, and 40 PCs are shown in the upper row of Fig. 10. The error bar plot in
the left panel is analogous to that in Fig. 9, and shows, in this case, the optimal number of PLS
components, which is found to be less than 10 for all M. The error bar plot with x-symbols (solid
lines) in the right panel shows the residual variance as the percentage of the total response-
variable variance; the expectation value and the standard deviation for a given M are, once again,
based on the results of the PLS procedure applied to each of the M response variables (and, of
course, the same set of original predictors). The additional error bar plot in the same panel

(dashed line with circles) shows the same quantity based on the full MQR, which uses all of the
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original response variables. Note that for M=10, 15, and 20, only a few (definitely less than 10)
effective predictor variables found by consecutive application of the PCR and PLS
methodologies capture essentially the same amount of variance in the response variables as the
MQR based on 63, 138, and 223 variables, respectively. For M = 40, the residual variances differ
by a factor of 2, which indicates that the additional variance “captured” by the original MQR
procedure is associated with a substantial overfitting.

The additional panels in Fig. 10 show analogous results for the second (2M original
predictors) and third (3M original predictors) level of the wind-only empirical stochastic model.
The PCR pre-processing has not been applied to these levels, so that the PLS regularization acted
directly on the original PCs and residuals. In each case, about a dozen optimal predictors are
identified, which capture essentially the same amount of the response variance as the full MLR
model for this level. Note that the residual variances become increasingly close to 50% for the
second and third level. Since our response variables have the form »""'—" and the predictors
include the term ", the case with no prediction skill (that is, 7 being pure white noise) will
identify the regression coefficient multiplying 7" to be equal to —1, and all other coefficients to be
zero. In this case, the residual will be exactly equal to #"*', and therefore the residual variance
will be exactly equal to the 50% of the response-variable variance. The deviations of the residual
variance from 50% in the fourth level of the wind-only regression model are negligible (not

shown), thus identifying the three-level empirical model to be optimal.
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APPENDIX B
Selection of predictor variables
A few regression coefficients found by the application of PCR-and-PLS regularization, as
described in appendix A, can be translated by trivial matrix manipulation into the coefficients of
the empirical model in the original predictor-variable basis. Many of these coefficients are fairly
small and do not contribute much to the predictive capability of a given empirical model. We
therefore fine-tuned and enhanced our regression technique by the following procedure for the
selection of the predictor variables.

This procedure was also based on subsampling of original predictor and response
variables. For a model mimicking the evolution of M original PCs of SLW (M=10-100), we first
obtained 100 sets of regression coefficients by randomly applying PCR-and-PLS regularization
to 100 randomly sampled subsets of the full original time series, each of which included 80% of
the original data points. The optimal number of PCR components in the quadratic model was
estimated according to the linear approximation shown in Fig. 9. The general cubic model was
also constructed for M = 10-40; for this model, we determined the optimal number of PCR
components in a way analogous to that for the quadratic model, prior to applying the PLS
regularization step. No PCR step was applied to the linear models. At the PLS step, we have used
a fixed number of 25 latent variables to define the optimal subspace for regression. This number
exceeded the optimal one in Fig. 9 by at least a factor of two and thus could not result in
underfitting. The regression coefficients so obtained were then translated into the original
predictor-variable space.

If the interval between the 2™ and 97" percentile of a given regression coefficient

obtained as described above contained the value zero, we excluded the corresponding predictor
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variable from consideration, thus forming a new, smaller subset of predictor variables. This
subset was in turn subsampled 100 times and subjected to PCR-and-PLS regression to identify
coefficients not significantly different from zero, and so on, until all coefficients of the final set
of predictors were found to be significant. The same procedure was applied to the second and
third level of each version of the inverse model. The final regression coefficients in each case
were found by applying the PCR-and-PLS regularization to the fully sampled set of optimal
predictors.

Table 2 lists the number of statistically significant nonzero coefficients of the three-level
inverse model of M leading PCs of SLW; the main level includes quadratic nonlinearities and a
seasonal cycle. The total number of coefficients at the main level is
(M~ (M+1)/2+M+3)" M, at the second level — 2M?, and at the third level — 3M*. Note that
the statistically significant coefficients are but a small fraction of the total number of
coefficients. For example, for M = 75, the main level of the quadratic model has only 4849
nonzero coefficients, out of a maximum possible of 219600. This means that our regression
procedure identified, on average, 4849/75 » 65 nonzero coefficients in each of the 75 main-level
equations; this number is an order of magnitude smaller than the number of degrees of freedom
Npor in the time series of the length of 1719. If one estimates the decorrelation time scale of
SLW anomalies to be 5 days, then Npor » 1719/5 = 344 >> 65. Recall also, that the number of
independent regression coefficients we have actually computed at each level is 25, which makes

the number of coefficients/DOF comparison even more favorable.
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Table Captions
TABLE 1. Average number of initial-state resets for different empirical SLW-only models

computed based on 100 surrogate simulations of a given model (see section 4a).

TABLE 2. The number of statistically significant coefficients of a three-level quadratic inverse

model based on M leading PCs of SLW (see Appendix B for further details).

Figure Captions

Fig. 1. Anomalies of atmospheric (SLW) and oceanic (SST) fields on 1 December 2002,
computed as the deviations from the average over the 16-day period of 1-16 December 2002: (a)
sea-level wind (SLW) anomaly; (b) sea-surface temperature (SST) anomalies. The two fields are

spatially correlated, over the region shown, with the correlation coefficient of —0.73.

Fig. 2. Low-order moments of SLW and SST anomalies: (a) time-mean SLW; (b) standard

deviation of SLW; (c) skewness of the zonal component of SLW; and (d) time-mean SST.

Fig. 3. Variances accounted for by the 100 leading EOF modes of (a,b) SLW and (c,d) SST;

individual and cumulative variances appear in panels (a,c) and (b,d), respectively.

Fig. 4. Leading EOFs of SLW: (a,b) EOFs 1 and 2; (c,d) EOFs 3 and 4.

Fig. 5. Leading EOFs of SST: (a,b) EOFs 1 and 2; and (¢) corresponding PCs (PCs 1 and 2 are

shown as solid and dashed lines, respectively).
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Fig. 6. Integral correlation time scales of the leading 100 PCs for: (a) wind, and (b) SST.

Fig. 7. Probability density function (PDF; left panels) and autocorrelation function (ACF; right
panels) of the observed and simulated zonal velocity anomalies at 120°W and 55°S. Solid lines:
the observed functions; dashed lines: 95% spread based on SLW-only model with quadratic main
level. The four rows show the results, from top to bottom, for the models constructed in the

subspace of 10, 30, 50, and 100 PCs of SLW, respectively.

Fig. 8. The standard deviation of the wind speed time series obtained by taking the ensemble
average of 100 simulations of SST-dependent SLW model forced by the observed history of SST
anomalies.. The model was constructed in the phase space of 100 leading EOFs of SLW. A
typical (maximum) standard deviation of analogous SLW-only model’s ensemble-mean time
series (not shown) is 0.25 (0.55) — both values are smaller than the standard deviations shown

here.

Fig. 9. The results of PCR cross-validation for the main level of our quadratic SLW-only models.
The number on the abscissa shows how many SLW PCs are included in the model. The dashed
line denotes the total number of predictors in the equation for each PC. The error bar plot (light
solid line) shows the optimal number of PCR components, with the central value being the
average of this number over its individual estimates obtained for each PC equation, and the bar

representing the standard deviation of these estimates. The straight heavy line is the optimal
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linear fit of the dependence of the PCR-optimized number of components on the number of

original variables (PCs) considered.

Fig. 10. PLS cross-validation results for the three-level empirical model with quadratic
nonlinearity in the main level. The error bar plots show the mean and standard deviations of each
quantity displayed computed using individual values of this quantity for each of the model
equations (the number of equations is equal to the number of original PCs simulated by the
empirical model). Left panels: the optimal number of PLS components; right panels: the
percentage of variance unaccounted for by the regression; x-symbols show the results of PLS
regression using the optimal number of latent variables, while the circles display the results of

standard MQR, with all predictors considered.
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TABLE 1. Average number of initial-state resets for different empirical SLW-only models

computed based on 100 surrogate simulations of a given model (see section 4a).

M 10 20 30 40 50 75 100
Linear 9 8 9 11 12 11 13
Quadratic | 15 12 21 27 27 15 10
Cubic 9 25 35 48
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TABLE 2. The number of statistically significant coefficients of a three-level quadratic inverse

model based on M leading PCs of SLW (see Appendix B for further details).

Level # of PCs # of all coeffs. # of significant | (K/K) 100%
M) (K) coeffs. (Ky)

Level 1 30 14940 2248 15
40 34520 3426 10
50 66400 4333 7
75 219600 4849 2
100 515300 4660 1

Level 2 30 1800 695 39
40 3200 994 31
50 5000 1415 28
75 11250 2834 25
100 20000 4986 25

Level 3 30 2700 393 15
40 4800 528 11
50 7500 688 9
75 16875 1235 7
100 30000 1923 6
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(a) Wind anomaly

Fig. 1. Anomalies of atmospheric (SLW) and oceanic (SST) fields on 1 December 2002,
computed as the deviations from the average over the 16-day period of 1-16 December 2002: (a)
sea-level wind (SLW) anomaly; (b) sea-surface temperature (SST) anomalies. The two fields are

spatially correlated, over the region shown, with the correlation coefficient of —0.73.
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Fig. 2. Low-order moments of SLW and SST anomalies: (a) time-mean SLW; (b) standard

deviation of SLW; (c) skewness of the zonal component of SLW; and (d) time-mean SST.
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Fig. 3. Variances accounted for by the 100 leading EOF modes of (a,b) SLW and (c,d) SST;

individual and cumulative variances appear in panels (a,c) and (b,d), respectively.
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(b)

(d)

Fig. 4. Leading EOFs of SLW: (a,b) EOFs 1 and 2; (c,d) EOFs 3 and 4.
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Fig. 5. Leading EOFs of SST: (a,b) EOFs 1 and 2; and (c) corresponding PCs (PCs 1 and 2 are

shown as solid and dashed lines, respectively).
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Fig. 6. Integral correlation time scales of the leading 100 PCs for: (a) wind, and (b) SST.
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Fig. 7. Probability density function (PDF; left panels) and autocorrelation function (ACF; right
panels) of the observed and simulated zonal velocity anomalies at 120°W and 55°S. Solid lines:
the observed functions; dashed lines: 95% spread based on SLW-only model with quadratic main
level. The four rows show the results, from top to bottom, for the models constructed in the
subspace of 10, 30, 50, and 100 PCs of SLW, respectively.
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Fig. 8. The standard deviation of the wind speed time series obtained by taking the ensemble
average of 100 simulations of SST-dependent SLW model forced by the observed history of SST
anomalies.. The model was constructed in the phase space of 100 leading EOFs of SLW. A
typical (maximum) standard deviation of analogous SLW-only model’s ensemble-mean time
series (not shown) is 0.25 (0.55) — both values are smaller than the standard deviations shown

here.
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Fig. 9. The results of PCR cross-validation for the main level of our quadratic SLW-only models.
The number on the abscissa shows how many SLW PCs are included in the model. The dashed
line denotes the total number of predictors in the equation for each PC. The error bar plot (light
solid line) shows the optimal number of PCR components, with the central value being the
average of this number over its individual estimates obtained for each PC equation, and the bar
representing the standard deviation of these estimates. The straight heavy line is the optimal
linear fit of the dependence of the PCR-optimized number of components on the number of

original variables (PCs) considered.
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Fig. 10. PLS cross-validation results for the three-level empirical model with quadratic
nonlinearity in the main level. The error bar plots show the mean and standard deviations of each
quantity displayed computed using individual values of this quantity for each of the model
equations (the number of equations is equal to the number of original PCs simulated by the
empirical model). Left panels: the optimal number of PLS components; right panels: the
percentage of variance unaccounted for by the regression; x-symbols show the results of PLS
regression using the optimal number of latent variables, while the circles display the results of

standard MQR, with all predictors considered.
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